Искусственная гравитация физические основы. Зачем космические аппараты вращаются

Я не знаю, откуда я пришел, куда иду и даже кто я такой.

Э. Шредингер

В ряде работ отмечался интересный эффект, который заключался в изменении веса предметов при наличии вращающихся масс. Изменение веса происходило вдоль оси вращения массы. В работах Н. Козырева наблюдалось изменение веса вращающегося гироскопа. Причём, в зависимости от направления вращения ротора гироскопа, происходило либо уменьшение, либо увеличение веса самого гироскопа. В работе Е. Подклетнова наблюдалось уменьшение веса предмета расположенного над сверхпроводящим вращающимся диском, который находился в магнитном поле. В работе В. Рощина и С. Година уменьшался вес массивного вращающегося диска из магнитного материала, который сам являлся источником магнитного поля.

В этих экспериментах можно выделить один общий фактор – наличие вращающейся массы.

Вращение присуще всем объектам нашей Вселенной, от микромира до макромира. Элементарные частицы обладают собственным механическим моментом – спином, все планеты, звёзды, галактики также вращаются вокруг своей оси. Другими словами – вращение любого материального объекта вокруг своей оси является его неотъемлемым свойством. Возникает закономерный вопрос: какая причина вызывает такое вращение?

Если верна гипотеза о хронополе и его воздействии на пространство , то можно допустить, что расширение пространства происходит за счёт его вращения под воздействием хронополя. Т. е. хронополе в нашем трёхмерном мире расширяет пространство, из области подпространства в область надпространства, раскручивая его по строго определённой зависимости.

Как уже отмечалось , при наличии гравитационной массы, энергия хронополя уменьшается, пространство расширяется медленнее, что и приводит к появлению гравитации. По мере удаления от гравитационной массы энергия хронополя возрастает, скорость расширения пространства увеличивается, а гравитационное воздействие уменьшается. Если в какой-либо области вблизи гравитационной массы каким-либо образом увеличить или уменьшить скорость расширения пространства, то это приведёт к изменению веса предметов, расположенных в этой области.

Вполне вероятно, что эксперименты с вращающимися массами и вызвали такое изменение скорости расширения пространства. Пространство каким-то образом взаимодействует с вращающейся массой. При достаточно высокой скорости вращения массивного предмета можно увеличить или уменьшить скорость расширения пространства и, соответственно, изменить вес предметов расположенных вдоль оси вращения.

Автором была предпринята попытка, проверить экспериментально высказанное предположение. В качестве вращающейся массы был взят авиационный гироскоп. Схема эксперимента соответствовала эксперименту Е. Подклетнова . Грузы из материалов различной плотности уравновешивались на аналитических весах с точностью измерения до 0,05 мг. Вес грузов составлял 10 гр. Под чашкой весов с грузом размещался гироскоп, который вращался с достаточно большой скоростью. Частота тока питания гироскопа составляла 400 Гц. Использовались гироскопы различной массы с различными моментами инерции. Максимальный вес ротора гироскопа достигал 1200 г. Вращение гироскопов проводилось как по часовой, так и против часовой стрелки.

Длительные эксперименты со второй половины марта по август 2002 года не дали положительных результатов. Иногда наблюдались незначительные отклонения веса в пределах одного деления. Их можно было отнести к погрешностям, возникающих за счёт вибраций или других, каких-либо внешних воздействий. Однако, характер этих отклонений был однозначным. При вращении гироскопа против часовой стрелки наблюдалось уменьшение веса, а по часовой – увеличение.

Во время эксперимента изменялось положение гироскопа, направление его оси, под различными углами к горизонту. Но и это не дало никаких результатов.

В своей работе Н. Козырев отмечал, что изменение веса гироскопа можно было обнаружить поздней осенью и зимой и даже в этом случае показания изменялись в течении дня. Очевидно, это связано с положением Земли относительно Солнца. Свои эксперименты Н. Козырев проводил в Пулковской обсерватории, которая расположена около 60° северной широты. В зимнее время года положение Земли относительно Солнца таково, что направление действия силы тяжести на этой широте почти перпендикулярно плоскости эклиптики (7°) в дневное время. Т.е. ось вращения гироскопа была практически параллельна оси плоскости эклиптики. В летнее время, для получения результата, эксперимент надо было попробовать проводить ночью. Возможно та же причина не позволила повторить эксперимент Е. Подклетнова в других лабораториях.

На широте г. Житомира (около 50° северной широты), где проводились эксперименты автором, угол между направлением силы тяжести и перпендикуляром к плоскости эклиптики составляет в летнее время почти 63°. Возможно по этой причине и наблюдались только незначительные отклонения. Но возможно и то, что воздействие оказывалось и на уравновешивающие грузы. В этом случае, разница в весе проявлялась за счёт различного расстояния от взвешиваемого и уравновешивающего грузов до гироскопа.

Можно представить следующий механизм изменения веса. Вращение гравитационных масс и других объектов и систем во Вселенной происходит под воздействием хронополя. Но вращение происходит вокруг какой-то одной оси, положение которой в пространстве зависит от каких-то факторов, пока нам неизвестных. Соответственно, в присутствии таких вращающихся объектов, расширение пространства под воздействием хронополя приобретает направленный характер. То есть в направлении оси вращения системы расширение пространства будет происходить быстрее, чем в каком-либо другом направлении.

Пространство можно представить в виде квантового газа, который заполняет всё даже внутри атомного ядра. Между пространством и материальными объектами, внутри которых оно расположено, существует взаимодействие, которое может усиливаться под воздействием внешних факторов, например при наличии магнитного поля. Если вращающаяся масса располагается в плоскости вращения гравитационной системы и вращается в ту же сторону с достаточно высокой скоростью, то вдоль оси вращения пространство будет расширяться быстрее за счёт взаимодействия пространства и вращающейся массы. Когда направления действия силы тяжести и расширения пространства совпадает, то вес предметов будет уменьшаться. При противоположном вращении, расширение пространства будет замедляться, что приведёт к увеличению веса.

В тех случаях, когда направления действия силы тяжести и расширения пространства не совпадают, результирующая сила изменяется незначительно и её трудно зарегистрировать.

Вращающаяся масса будет изменять напряжённость гравитационного поля в конкретном месте. В формуле для напряжённости гравитационного поля g = (G · M ) / R 2 гравитационная постоянная G и масса Земли М не могут меняться. Следовательно, изменяется величина R – расстояние от центра Земли до взвешиваемого предмета. За счёт дополнительного расширения пространства эта величина возрастает на ΔR . Т. е. груз как бы поднимается над поверхностью Земли на эту величину, что и приводит к изменению напряжённости гравитационного поля g" = (G · M ) / (R + ΔR ) 2 .

В случае замедлении расширения пространства, величина ΔR будет вычитаться из R , что приведёт к увеличению веса.

Эксперименты с изменением веса в присутствии вращающейся массы не позволяют достичь высокой точности измерения. Возможно, скорости вращения гироскопа не достаточно для заметного изменения веса, так как дополнительное расширение пространства весьма не значительно. Если подобные эксперименты провести с квантовыми часами, то можно достичь более высокой точности измерения, сравнивая показания двух часов. В области, где пространство расширяется быстрее, возрастает напряжённость хронополя, и часы будут иметь ускоренный ход и наоборот.

Источники информации:

  1. Kozyrev N.A. On the possibility of experimental investigation of the properties of time. // Time in Science and Philosophy. Praga, 1971. P. 111...132.
  2. Рощин В.В, Годин С.М. Экспериментальное исследование нелинейных эффектов в динамической магнитной системе . , 2001.
  3. Юмашев В.Е.

Б.В. Раушенбах, соратник Королева, рассказал о том, как у того возникла идея создания искусственной тяжести на космическом корабле: в конце зимы 1963 года главного конструктора, расчищавшего дорожку от снега у своего домика на Останкинской улице, можно сказать, осенило. Не дождавшись понедельника, он позвонил по телефону Раушенбаху, который жил неподалеку, и вскоре они вместе стали «расчищать дорогу» в космос для длительных полетов.
Идея, как чаще всего бывает, оказалась простой; она и должна быть простой, иначе на практике может ничего не получиться.

Для полноты картины. Март 1966, американцы на «Джемини-11»:

В 11:29 «Джемини-11» был отстыкован от «Аджены». Началось самое интересное: как поведут себя два объекта, связанные тросом? Сначала Конрад пытался ввести связку в гравитационную стабилизацию – чтобы ракета висела внизу, корабль вверху и трос был натянут.
Однако отойти на 30 м, не возбудив сильных колебаний, не удалось. В 11:55 перешли ко второй части эксперимента – «искусственная тяжесть». Конрад ввел связку во вращение; трос сначала натянулся по кривой линии, но через 20 мин выпрямился и вращение стало вполне правильным. Конрад довел его скорость до 38 °/мин, а после ужина до 55 °/мин, создав тяжесть на уровне 0,00078g. «На ощупь» это не чувствовалось, но вещи потихоньку осели на дно капсулы. В 14:42 после трех часов вращения штырь был отстрелен, и «Джемини» ушел от ракеты.

Даже человек, не интересующийся космосом, хоть раз видел фильм о космических путешествиях или читал о таких вещах в книгах. Практически во всех подобных произведениях люди ходят по кораблю, нормально спят, не испытывают проблем с приемом пищи. Это означает, что на этих - выдуманных - кораблях имеется искусственная гравитация. Большинство зрителей воспринимает это как нечто совершенно естественное, а ведь это совсем не так.

Искусственная гравитация

Так называют изменение (в любую сторону) привычной для нас гравитации путем применения различных способов. И делается это не только в фантастических произведениях, но и во вполне реальных земных ситуациях, чаще всего, для экспериментов.

В теории создание искусственной гравитации выглядит не так сложно. К примеру, воссоздать ее можно при помощи инерции, точнее, Потребность в этой силе возникла не вчера - произошло это сразу, как только человек начал мечтать о длительных космических перелетах. Создание искусственной гравитации в космосе даст возможность избежать множества проблем, возникающих при продолжительном нахождении в невесомости. У космонавтов слабеют мускулы, кости становятся менее прочными. Путешествуя в таких условиях месяцы, можно получить атрофию некоторых мышц.

Таким образом, на сегодняшний день создание искусственной гравитации - задача первостепенной важности, без этого умения просто невозможно.

Матчасть

Даже те, кто знают физику лишь на уровне школьной программы, понимают, что гравитация - один из фундаментальных законов нашего мира: все тела взаимодействуют друг с другом, испытывая взаимное притяжение/отталкивание. Чем больше тело, тем выше его сила притяжения.

Земля для нашей реальности - объект очень массивный. Именно поэтому все без исключения тела вокруг к ней притягиваются.

Для нас это означает которое принято измерять в g, равное 9.8 метра за квадратную секунду. Это значит, что если бы под ногами у нас не было опоры, мы бы падали со скоростью, ежесекундно увеличивающейся на 9.8 метра.

Таким образом, только благодаря гравитации мы способны стоять, падать, нормально есть и пить, понимать, где находится верх, где низ. Если притяжение исчезнет - мы окажемся в невесомости.

Особенно хорошо знакомы с этим феноменом космонавты, оказывающиеся в космосе в состоянии парения - свободного падения.

Теоретически ученые знают, как создать искусственную гравитацию. Существует несколько методик.

Большая масса

Самый логичный вариант - сделать настолько большим, чтобы на нем возникала искусственная гравитация. На корабле можно будет чувствовать себя комфортно, поскольку не будет потеряна ориентация в пространстве.

К сожалению, этот способ при современном развитии технологий нереален. Чтобы соорудить такой объект, требуется слишком много ресурсов. Кроме того, для его подъема потребуется невероятное количество энергии.

Ускорение

Казалось бы, если требуется достичь g, равного земному, нужно всего лишь придать кораблю плоскую (платформообразную) форму, и заставить его двигаться по перпендикуляру к плоскости с нужным ускорением. Таким путем будет получена искусственная гравитация, причем - идеальная.

Однако в реальности все гораздо сложнее.

В первую очередь стоит учесть топливный вопрос. Для того чтобы станция постоянно ускорялась, необходимо иметь бесперебойный источник питания. Даже если внезапно появится двигатель, не выбрасывающий материю, закон сохранения энергии останется в силе.

Вторая проблема заключается в самой идее постоянного ускорения. Согласно нашим знаниям и физическим законам, невозможно ускоряться до бесконечности.

Кроме того, такой транспорт не подходит для исследовательских миссий, поскольку он должен постоянно ускоряться - лететь. Он не сможет остановиться для изучения планеты, он даже медленно пролететь вокруг нее не сможет - надо ускоряться.

Таким образом, становится ясно, что и такая искусственная гравитация нам пока недоступна.

Карусель

Каждый знает, как вращение карусели воздействует на тело. Поэтому устройство искусственной гравитации по этому принципу кажется наиболее реальным.

Все, что находится в диаметре карусели, стремится выпасть из нее со скоростью, примерно равной скорости вращения. Выходит, что на тела действует сила, направленная вдоль радиуса вращающегося объекта. Это очень похоже на гравитацию.

Итак, требуется корабль, имеющий цилиндрическую форму. При этом он должен вращаться вокруг своей оси. Между прочим, искусственная гравитация на космическом корабле, созданная по этому принципу, достаточно часто демонстрируется в научно-фантастических фильмах.

Бочкообразный корабль, вращаясь вокруг продольной оси, создает центробежную силу, направление которой соответствует радиусу объекта. Чтобы вычислить получаемое ускорение, требуется разделить силу на массу.

В этой формуле результат расчетов - ускорение, первая переменная - узловая скорость (измеряется в количестве радиан в секунду), вторая - радиус.

Согласно этому, для получения привычной нам g, необходимо грамотно сочетать и радиус космического транспорта.

Подобная проблема освещена в таких фильмах, как «Интерсолах», «Вавилон 5», «2001 год: Космическая одиссея» и подобных им. Во всех этих случаях искусственная гравитация приближена к земному ускорению свободного падения.

Как бы ни была хороша идея, реализовать ее достаточно сложно.

Проблемы метода «карусель»

Самая очевидная проблема освещена в «Космической одиссее». Радиус «космического перевозчика» составляет порядка 8 метров. Для того чтобы получить ускорение в 9.8, вращение должно происходить со скоростью, примерно, 10.5 оборота ежеминутно.

При указанных величинах проявляется «эффект Кориолиса», который заключается в том, что на различном удалении от пола действует разная сила. Она напрямую зависит от угловой скорости.

Выходит, искусственная гравитация в космосе создана будет, однако слишком быстрое вращение корпуса приведет к проблемам с внутренним ухом. Это, в свою очередь, вызывает нарушения равновесия, проблемы с вестибулярным аппаратом и прочие - аналогичные - трудности.

Возникновение этой преграды говорит о том, что подобная модель крайне неудачная.

Можно попробовать пойти от обратного, как поступили в романе «Мир-Кольцо». Тут корабль выполнен в форме кольца, радиус которого приближен к радиусу нашей орбиты (порядка 150 млн км). При таком размере скорости его вращения вполне достаточно, чтобы игнорировать эффект Кориолиса.

Можно предположить, что проблема решена, однако это совсем не так. Дело в том, что полный оборот этой конструкции вокруг своей оси занимает 9 дней. Это дает возможность предположить, что нагрузки окажутся слишком велики. Для того чтобы конструкция их выдержала, необходим очень крепкий материал, которым на сегодняшний день мы не располагаем. Кроме того, проблемой является количество материала и непосредственно процесс постройки.

В играх подобной тематики, как и в фильме «Вавилон 5», эти проблемы каким-то образом решены: вполне достаточна скорость вращения, эффект Кориолиса не существенен, гипотетически создать такой корабль возможно.

Однако даже такие миры имеют недостаток. Зовут его - момент импульса.

Корабль, вращаясь вокруг оси, превращается в огромный гироскоп. Как известно, заставить гироскоп отклониться от оси крайне сложно благодаря Важно, чтобы его количество не покидало систему. Это означает, что задать направление этому объекту будет очень сложно. Однако такую проблему решить можно.

Решение проблемы

Искусственная гравитация на космической станции становится доступной, когда на помощь приходит «цилиндр О’Нила». Для создания этой конструкции необходимы одинаковые цилиндрические корабли, которые соединяют вдоль оси. Вращаться они должны в разные стороны. Результатом такой сборки является нулевой момент импульса, поэтому не должно возникнуть трудностей с приданием кораблю необходимого направления.

Если возможно сделать корабль радиусом порядка 500 метров, то он будет работать именно так, как и должен. При этом искусственная гравитация в космосе будет вполне комфортной и пригодной для длительных перелетов на кораблях или исследовательских станциях.

Space Engineers

Как создать искусственную гравитацию, известно создателям игры. Впрочем, в этом фантастическом мире гравитация - это не взаимное притяжение тел, но линейная сила, призванная ускорить предметы в заданном направлении. Притяжение тут не абсолютно, оно изменяется при перенаправлении источника.

Искусственная гравитация на космической станции создается путем использования специального генератора. Она равномерна и равнонаправленна в зоне действия генератора. Так, в реальном мире, попав под корабль, в котором установлен генератор, вы бы были притянуты к корпусу. Однако в игре герой будет падать до тех пор, пока не покинет периметр действия устройства.

На сегодняшний день искусственная гравитация в космосе, созданная таким устройством, для человечества недоступна. Однако даже убеленные сединами разработчики не перестают мечтать о ней.

Сферический генератор

Это более реалистичный вариант оборудования. При его установке гравитация имеет направление к генератору. Это дает возможность создать станцию, гравитация которой будет равна планетарной.

Центрифуга

Сегодня искусственная гравитация на Земле встречается в различных устройствах. Основаны они, большей частью, на инерции, поскольку эта сила ощущается нами аналогично гравитационному воздействию - организм не различает, какая причина вызывает ускорение. Как пример: человек, поднимающийся в лифте, испытывает на себе воздействие инерции. Глазами физика: подъем лифта добавляет к ускорению свободного падения ускорение кабины. При возвращении кабины к размеренному движению «прибавка» в весе исчезает, возвращая привычные ощущения.

Ученых давно интересует искусственная гравитация. Центрифуга используется для этих целей чаще всего. Этот метод подходит не только для космических кораблей, но и для наземных станций, в которых требуется изучать воздействие гравитации на человеческий организм.

Изучить на Земле, применять в…

Хотя изучение гравитации началось из космоса, это очень земная наука. Даже на сегодняшний день достижения в этой сфере нашли свое применение, например, в медицине. Зная, возможно ли создать искусственную гравитацию на планете, можно использовать ее для лечения проблем с двигательным аппаратом или нервной системы. Более того, изучением этой силы занимаются прежде всего на Земле. Это дает возможность космонавтам проводить эксперименты, оставаясь под пристальным вниманием врачей. Другое дело искусственная гравитация в космосе, там нет людей, способных помочь космонавтам при возникновении непредвиденной ситуации.

Имея в виду полную невесомость, нельзя брать в расчет спутник, находящийся на околоземной орбите. На эти объекты, пусть и в малой степени, воздействует земное притяжение. Силу тяжести, образующуюся в таких случаях, называют микрогравитацией. Реальную гравитацию испытывают только в аппарате, летящем с постоянной скоростью в открытом космосе. Впрочем, человеческий организм эту разницу не ощущает.

Испытать на себе невесомость можно при затяжном прыжке (до того, как купол раскроется) или во время параболического снижения самолета. Такие эксперименты часто ставят в США, но в самолете это ощущение длится только 40 секунд - это слишком мало для полноценного изучения.

В СССР еще в 1973 году знали, можно ли создать искусственную гравитацию. И не просто создавали ее, но и в некотором роде изменяли. Яркий пример искусственного уменьшения силы тяжести - сухое погружение, иммерсия. Для достижения необходимого эффекта требуется положить плотную пленку на поверхность воды. Человек размещается поверх нее. Под тяжестью тела организм погружается под воду, наверху остается лишь голова. Эта модель демонстрирует безопорность с пониженной гравитацией, которая характерна для океана.

Нет необходимости отправляться в космос, чтобы ощутить на себе воздействие противоположной невесомости силы - гипергравитации. При взлете и посадке космического корабля, в центрифуге перегрузку можно не только ощутить, но и изучить.

Лечение гравитацией

Гравитационная физика изучает в том числе и воздействие невесомости на организм человека, стремясь минимизировать последствия. Однако большое количество достижений этой науки способно пригодиться и обычным жителям планеты.

Большие надежды медики возлагают на исследования поведения мышечных ферментов при миопатии. Это тяжелое заболевание, ведущее к ранней смерти.

При активных физических занятиях в кровь здорового человека поступает большой объем фермента креатинофосфокиназы. Причина этого явления неясна, возможно, нагрузка воздействует на мембрану клеток таким образом, что она «дырявится». Больные миопатией получают тот же эффект без нагрузок. Наблюдения за космонавтами показывают, что в невесомости поступление активного фермента в кровь значительно снижается. Такое открытие позволяет предположить, что применение иммерсии позволит снизить негативное воздействие приводящих к миопатии факторов. В данный момент проводятся опыты на животных.

Лечение некоторых болезней уже сегодня проводится с использованием данных, полученных при изучении гравитации, в том числе искусственной. К примеру, проводится лечение ДЦП, инсультов, Паркинсона путем применения нагрузочных костюмов. Практически закончены исследования положительного воздействия опоры - пневматического башмака.

Полетим ли на Марс?

Последние достижения космонавтов дают надежду на реальность проекта. Имеется опыт медицинской поддержки человека при длительном нахождении вдали от Земли. Много пользы принесли и исследовательские полеты к Луне, сила гравитации на которой в 6 раз меньше нашей родной. Теперь космонавты и ученые ставят перед собой новую цель - Марс.

Прежде чем вставать в очередь за билетом на Красную планету, следует знать, что ожидает организм уже на первом этапе работы - в пути. В среднем дорога к пустынной планете займет полтора года - около 500 суток. Рассчитывать в пути придется только на свои собственные силы, помощи ждать просто неоткуда.

Подтачивать силы будут множество факторов: стресс, радиация, отсутствие магнитного поля. Самое главное же испытание для организма - изменение гравитации. В путешествии человек «ознакомится» с несколькими уровнями гравитации. В первую очередь это перегрузки при взлете. Затем - невесомость во время полета. После этого - гипогравитация в месте назначения, т. к. сила тяжести на Марсе менее 40% земной.

Как справляются с отрицательным воздействием невесомости в длительном перелете? Есть надежда, что разработки в области создания искусственной гравитации помогут решить этот вопрос в недалеком будущем. Опыты на крысах, путешествующих на «Космос-936» показывают, что этот прием не решает всех проблем.

Опыт ОС показал, что гораздо больше пользы для организма способно принести применение тренажерных комплексов, способных определить необходимую нагрузку для каждого космонавта индивидуально.

Пока считается, что на Марс полетят не только исследователи, но и туристы, желающие основать колонию на Красной планете. Для них, во всяком случае первое время, ощущения от нахождения в невесомости перевесят все доводы медиков о вреде длительного нахождения в таких условиях. Однако через несколько недель помощь потребуется и им, поэтому так важно суметь найти способ создать на космическом корабле искусственную гравитацию.

Итоги

Какие выводы можно сделать о создании искусственной гравитации в космосе?

Среди всех рассматриваемых в данный момент вариантов наиболее реалистично выглядит вращающаяся конструкция. Однако при нынешнем понимании физических законов это невозможно, поскольку корабль - это не полый цилиндр. Внутри него имеются перекрытия, мешающие воплощению идей.

Кроме того, радиус корабля должен быть настолько большим, чтобы эффект Кориолиса не оказывал существенного влияния.

Чтобы управлять чем-то подобным, требуется упомянутый выше цилиндр О’Нила, который даст возможность управлять кораблем. В этом случае повышаются шансы применения подобной конструкции для межпланетных перелетов с обеспечением команды комфортным уровнем гравитации.

До того как человечеству удастся претворить свои мечты в жизнь, хотелось бы видеть в фантастических произведениях чуточку большей реалистичности и еще большего знания законов физики.

Длительные космические полеты, освоение других планет то, о чем ранее писали фантасты Айзек Азимов, Станислав Лем, Александр Беляев и др., станет вполне возможной реальностью благодаря знаниям . Так как при воссоздании земного уровня гравитации мы сможем избежать отрицательных последствий микрогравитации (невесомости) для человека (атрофия мышц, сенсорные, двигательные и вегетативные расстройства). То есть практически любой желающий человек сможет побывать в космосе независимо от физических особенностей тела. При этом пребывание на борту космического корабля станет более комфортным. Люди смогут использовать уже существующие, привычные для них приборы, средства (например, душ, туалет).

На Земле уровень гравитации определяется ускорением силы тяжести в среднем равняется 9,81 м/с 2 («перегрузка» 1 g), в то время как в космосе, в условиях невесомости приблизительно 10 -6 g. К.Э. Циолковский приводил аналогии между ощущением массы тела при погружении в воду или лежа в постели с состоянием невесомости в космосе.

«Земля - это колыбель разума, но нельзя вечно жить в колыбели».
«Мир должен быть еще проще».
Константин Циолковский

Интересно, что для гравитационной биологии - умение создавать различные гравитационные условия будет настоящим прорывом. Станет возможным изучить: как изменяется структура, функции на микро-, макроуровнях, закономерности при гравитационных воздействиях разной величины и направленности. Эти открытия, в свою очередь, помогут развить достаточно новое сейчас направление - гравитационную терапию. Рассматривается возможность и эффективность применения для лечения изменения силы тяжести (повышенная по сравнению с Земной). Повышение силы тяжести мы ощущаем, как будто тело чуть-чуть потяжелело. Сегодня ведутся исследования применения гравитационной терапии при гипертонической болезни, а также для восстановления костных тканей при переломах.

(искусственной гравитации) в большинстве случаев основываются на принципе эквивалентности сил инерции и гравитации. Принцип эквивалентности говорит о том, что мы ощущаем приблизительно одинаково ускорение движения не отличая причину, которая его вызвала: гравитация или же силы инерции. В первом варианте ускорение происходит за счет воздействия гравитационного поля, во втором благодаря ускорению движения неинерциальной системы отсчета (система, которая движется с ускорением), в которой находится человек. Например, подобное воздействие сил инерции испытывает человек в лифте (неинерциальная система отсчета) при резком подъёме вверх (с ускорением, появляется на несколько секунд ощущение как будто тело потяжелело) или торможении (ощущение, что пол уходит из-под ног). С точки зрения физики: при подъёме лифта вверх к ускорению свободного падения в неинерциальной системе приплюсовывается ускорение движения кабины. Когда восстанавливается равномерное движение - исчезает «прибавка» в весе, то есть возвращается привычное ощущение массы тела.

Сегодня, как и почти 50 лет назад, для создания искусственной силы тяжести применяются центрифуги (используется центробежное ускорение при вращении космических систем). Проще говоря во время вращения космической станции вокруг своей оси будет возникать центробежное ускорение, которое будет «выталкивать» человека от центра вращения в сторону и в результате космонавт или другие объекты смогут находится на «полу». Для лучшего понимания этого процесса и с какими трудностями сталкивается ученые давайте посмотрим на формулу по которой определяется центробежная сила при вращении центрифуги:

F=m*v 2 *r, где m ‒ масса, v ‒ линейная скорость, r ‒ расстояние от центра вращения.

Линейная скорость равняется: v=2π*rT , где Т - количество оборотов в секунду, π ≈3,14…

То есть чем быстрее будет вращаться космический корабль, и чем дальше от центра будет находится космонавт, тем сильнее будет созданная искусственная сила тяжести.

Внимательно посмотрев на рисунок можем заметить, что при небольшом радиусе сила тяжести для головы и для ног человека будет значительно отличатся, что в свою очередь затруднит передвижение.

При движении космонавта в направлении вращения возникает сила Кориолиса. При этом велика вероятность того, что человека будет постоянно укачивать. Обойти это возможно при частоте вращения корабля 2 оборота в минуту при этом образуется искусственная сила тяжести 1g (как на Земле). Но при этом радиус будет составлять 224 метра (приблизительно ¼ километра, это расстояние подобно высоте 95-этажного здания или в длину как две большие секвои). То есть теоретически построить орбитальную станцию или космический корабль таких размеров можно. Но практически это требует значительных затрат ресурсов, сил и времени, которые в условиях приближающихся глобальных катаклизмов (см. доклад ) человечней направить на реальную помощь нуждающимся.

В следствие невозможности воссоздать необходимое значение уровня гравитации для человека на орбитальной станции или космическом корабле, учёные решили изучить возможность «снижения поставленной планки», то есть создания силы тяжести меньше земной. Что говорит о том, что за полвека исследований не удалось получить удовлетворяющих результатов. Это неудивительно так как в экспериментах стремятся создать условия, при которых сила инерции или же другие оказывали бы влияние, аналогичное воздействию гравитации на Земле. То есть получается, что искусственная гравитация, по сути, гравитацией не является.

На сегодня в науке существуют лишь теории о том что такое гравитация, большинство из которых основываются на теории относительности. При этом не одна из них не является полной (не объясняет протекание, результаты любых экспериментов в любых условиях, да и ко всему порой не согласовывается с другими физическими теориями подтвержденными экспериментально). Нет четкого знания и понимания: что же такое гравитация, как гравитация связана с пространством и временем, из каких частиц состоит и какие их свойства. Ответы на эти и многие другие вопросы можно найти сопоставив информацию изложенную в книге «Эзоосмос» А.Новых и докладе ИСКОННАЯ ФИЗИКА АЛЛАТРА. предлагает совершенно новый подход, который основывается на базовых знаниях первичных основ физики фундаментальных частиц , закономерностей их взаимодействия. То есть на основе глубокого понимания сути процесса гравитации и как следствие возможности точного расчет для воссоздания любых значений гравитационных условий как в космосе, так и на Земле (гравитационная терапия), прогнозирования результатов мыслимых и немыслимых экспериментов, поставленных как человеком, так и природой.

ИСКОННАЯ ФИЗИКА АЛЛАТРА - это намного больше, чем просто физика. Она открывает возможным решения задач любой сложности. Но главное благодаря знанию процессов происходящих на уровне частиц и реальных действий каждый человек может осознать смысл своей жизни, разобраться как работает система и получить практический опыт соприкосновения с духовным миром. Осознать глобальность и первичность Духовного, выйти из рамочных/шаблонных ограничений сознания, за пределы системы, обрести Настоящую Свободу.

«Как говорится, когда имеешь в руках универсальные ключи (знания об основах элементарных частиц), то можешь открыть любую дверь (микро- и макромира)».

«В таких условиях возможен качественно новый переход цивилизации в русло духовного саморазвития, масштабного научного познания мира и себя».

«Всё что угнетает человека в этом мире, начиная от навязчивых мыслей, агрессивных эмоций и заканчивая шаблонными желаниями эгоиста-потребителя это результат выбора человека в пользу септонного поля ‒ материальной разумной системы, которая шаблонно эксплуатирует человечество. Но если человек следует выбору своего духовного начала, то он приобретает бессмертие. И в этом нет религии, а есть знание физики, её исконных основ».

Елена Федорова



Вверх