Аэробное окисление других углеводов. А. Аэробное и анаэробное окисление глюкозы Аэробное окисление углеводов биологическое значение

Основным путем образования энергии в организме является аэробное окисление углеводов. При этом глюкоза в присутствии кислорода окисляется до СО 2 и Н 2 О с выделением большого количества энергии, часть которой идет на синтез 38-39 молекул АТФ.

Аэробный процесс идет по следующей схеме:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6H 2 О + 680 ккал.

Аэробное окисление глюкозы может происходить двумя путями - прямым и непрямым.

При прямом пути окисления глюкозы (синонимы: апотомический или пентозный цикл) происходит последовательное отщепление от молекулы глюкозы каждого из ее 6 атомов углерода с образованием в течение одного цикла одной молекулы СО 2 и Н 2 О. Распад всей молекулы глюкозы происходит в течение 6 повторяющихся циклов. Этот процесс преобладает в эритроцитах, лактирующей молочной железе, коре надпочечников, хрусталике глаза; в печени и почках он является побочным путем распада углеводов.

Особенностью этого процесса является образование пентоз, которые идут на построение РНК и ДНК, выделение энергии (36 молекул АТФ) и накопление НАДФН 2 -кофермента дегидрогеназ, которые участвуют в синтезе холестерина, жирных кислот, активировании фолиевой кислоты и т. д.

В печени и почках преобладает другой путь окисления глюкозы, который называется непрямым, или дихотомическим (см. схему 3). В ходе этого процесса молекула глюкозы предварительно расщепляется на две молекулы фосфотриоз (процесс аналогичен анаэробному распаду углеводов) с последующим образованием пировиноградной кислоты. Пировиноградная кислота в результате окислительного декарбоксилирования превращается в ацетил-КоА


Последний поступает в цикл Креоса, где происходит ею постепенное окисление до СО 2 и Н 2 О и выделение большого количества энергии.

В ходе "непрямого" окисления одной молекулы глюкозы выделяется 680 ккал энергии, из которой образуется 38-39 молекул АТФ (см. схему 3).

В дрожжевых клетках и разных микроорганизмах также происходят процессы распада углеводов, однако конечные продукты различны в зависимости от вида микробов и дрожжей. Так, в дрожжевых клетках происходят процессы образования этилового спирта.

Механизм спиртового брожения глюкозы был вскрыт работами И. М. Манассеиной, Э. Бухнера, А. Н. Лебедева и других авторов. Под действием ферментов дрожжевых клеток происходит ранее рассмотренный процесс распада глюкозы или гликогена до пировиноградной кислоты. Последняя подвергается декарбоксилированию с образованием уксусного альдегида, который восстанавливается в этиловый спирт:


Таким образом, конечными продуктами спиртового брожения являются СО 2 и этиловый спирт.

Молочнокислые бактерии превращают углеводы в молочную кислоту, маслянокислые - в масляную кислоту и т. д.

При изучении брожения Л. Пастер обратил внимание на то, что при избытке кислорода процесс гликолиза тормозится. Этот факт получил название эффекта Пастера . Объяснения ему пока еще нет. Существуют различные гипотезы, но ни одна из них не может с достаточной степенью точности его объяснить.

Исследованиями О. Варбурга было установлено, что в эмбриональной ткани и тканях злокачественных опухолей кислород не тормозит гликолиз. Образование молочной кислоты в присутствии кислорода получило название "аэробный гликолиз" .

В аэробных условиях глюкоза окисляется до СО 2 и Н 2 О. Суммарное уравнение:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О + 2880 кДж/моль.

Этот процесс включает несколько стадий:

    Аэробный гликолиз . В нем происходит окисления 1 глюкозы до 2 ПВК, с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются) и 2 НАДН 2 ;

    Превращение 2 ПВК в 2 ацетил-КоА с выделением 2 СО 2 и образованием 2 НАДН 2 ;

    ЦТК. В нем происходит окисление 2 ацетил-КоА с выделением 4 СО 2 , образованием 2 ГТФ (дают 2 АТФ), 6 НАДН 2 и 2 ФАДН 2 ;

    Цепь окислительного фосфорилирования. В ней происходит окисления 10 (8) НАДН 2 , 2 (4) ФАДН 2 с участием 6 О 2 , при этом выделяется 6 Н 2 О и синтезируется 34 (32) АТФ.

В результате аэробного окисления глюкозы образуется 38 (36) АТФ, из них: 4 АТФ в реакциях субстратного фосфорилирования, 34 (32) АТФ в реакциях окислительного фосфорилирования. КПД аэробного окисления составит 65%.

Анаэробное окисление глюкозы

Катаболизм глюкозы без О 2 идет в анаэробном гликолизе и ПФШ (ПФП).

    В ходе анаэробного гликолиза происходит окисления 1 глюкозы до 2 молекул молочной кислоты с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются). В анаэробных условиях гликолиз является единственным источником энергии. Суммарное уравнение: С 6 Н 12 О 6 + 2Н 3 РО 4 + 2АДФ → 2С 3 Н 6 О 3 + 2АТФ + 2Н 2 О.

    В ходе ПФП из глюкозы образуются пентозы и НАДФН 2 . В ходе ПФШ из глюкозы образуются только НАДФН 2 .

ГЛИКОЛИЗ

Гликолиз – главный путь катаболизма глюкозы (а также фруктозы и галактозы). Все его реакции протекают в цитозоле.

Аэробный гликолиз - это процесс окисления глюкозы до ПВК, протекающий в присутствии О 2 .

Анаэробный гликолиз – это процесс окисления глюкозы до лактата, протекающий в отсутствии О 2 .

Анаэробный гликолиз отличается от аэробного только наличием последней 11 реакции, первые 10 реакций у них общие.

Этапы гликолиза

В любом гликолизе можно выделить 2 этапа:

    1 этап подготовительный, в нем затрачивается 2 АТФ. Глюкоза фосфорилируется и расщепляется на 2 фосфотриозы;

    2 этап, сопряжён с синтезом АТФ. На этом этапе фосфотриозы превращаются в ПВК. Энергия этого этапа используется для синтеза 4 АТФ и восстановления 2НАДН 2 , которые в аэробных условиях идут на синтез 6 АТФ, а в анаэробных условиях восстанавливают ПВК до лактата.

Энергетический баланс гликолиза

Таким образом, энергетический баланс аэробного гликолиза:

8АТФ = -2АТФ + 4АТФ + 6АТФ (из 2НАДН 2)

Энергетический баланс анаэробного гликолиза:

2АТФ = -2АТФ + 4АТФ

Общие реакции аэробного и анаэробного гликолиза

1. Гексокиназа (гексокиназа II, АТФ: гексозо-6-фосфотрансфераза) в мышцах фосфорилирует в основном глюкозу, меньше – фруктозу и галактозу. Кm<0,1 ммоль/л. Ингибитор глюкозо-6-ф, АТФ. Активатор адреналин. Индуктор инсулин.

Глюкокиназа (гексокиназа IV, АТФ: глюкозо-6-фосфотрансфераза) фосфорилирует глюкозу. Кm - 10 ммоль/л, активна в печени, почках. Не ингибируется глюкозо-6-ф. Индуктор инсулин. Гексокиназы осуществляют фосфорилирование гексоз.

2. Фосфогексозоизомераза (глюкозо-6ф-фруктозо-6ф-изомераза) осуществляет альдо-кетоизомеризацию открытых форм гексоз.

3. Фосфофруктокиназа 1 (АТФ: фруктозо-6ф-1-фосфотрансфераза) осуществляет фосфорилирование фруктозы-6ф. Реакция необратима и самая медленная из всех реакций гликолиза, определяет скорость всего гли­колиза. Активируется: АМФ, фруктозо-2,6-дф (мощный активатор, образуется с участием фосфофруктокиназы 2 из фруктозы-6ф), фруктозо-6-ф, Фн. Ингибируется: глюкагоном, АТФ, НАДН 2 , цитратом, жирными кислотами, кетоновыми телами. Индуктор реакции инсулин.

4. Альдолаза А (фруктозо-1,6-ф: ДАФ-лиаза). Альдолазы действуют на открытые формы гексоз, имеют 4 субъединицы, образуют несколько изоформ. В большинстве тканей содержится Альдолаза А. В печени и почках – Альдолаза В.

5. Фосфотриозоизомераза (ДАФ-ФГА-изомераза).

6. 3-ФГА дегидрогеназа (3-ФГА: НАД + оксидоредуктаза (фосфорилирующая)) состоит из 4 субъединиц. Катализирует образование макроэргической связи в 1,3-ФГК и восстановление НАДН 2 , которые используются в аэробных условиях для синтеза 8 (6) молекул АТФ.

7. Фосфоглицераткиназа (АТФ: 3ФГК-1-фосфотрансфераза). Осуществляет субстратное фосфорилирование АДФ с образованием АТФ.

В следующих реакциях низкоэнергетический фосфоэфир переходит в высокоэнергетический фосфат.

8. Фосфоглицератмутаза (3-ФГК-2-ФГК-изомераза) осуществляет перенос фосфатного остатка в ФГК из по­ложения 3 положение 2.

9. Енолаза (2-ФГК: гидро-лиаза) от­щепляет от 2-ФГК молекулу воды и образует высокоэнергетическую связь у фосфора. Ингибируется ионами F - .

10. Пируваткиназа (АТФ: ПВК-2-фосфотрансфераза) осуществляет субстратное фосфорилирование АДФ с образованием АТФ. Активируется фруктозо-1,6-дф, глюкозой. Ингибируется АТФ, НАДН 2 , глюкагоном, адреналином, аланином, жирными кислотами, Ацетил-КоА. Индуктор: инсулин, фруктоза.

Образующаяся енольная форма ПВК затем неферментативно переходит в бо­лее термодинамически стабильную кетоформу. Данная реакция является последней для аэробного гликолиза.

Дальнейший катаболизм 2 ПВК и использование 2 НАДН 2 зависит от наличия О 2 .

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

« Аэробное окисление углеводов. Биологическое окисление и восстановление»

МИНСК, 2008


Аэробное окисление углеводов - основной путь образования энергии для организма. Непрямой - дихотомический и прямой - апотомический.

Прямой путь распада глюкозы – пентозный цикл – приводит к образованию пентоз и накоплению НАДФН 2 . Пентозный цикл характеризуется последовательным отщеплением от молекул глюкозы каждого из ее 6 атомов углерода с образованием в течение одного цикла по 1 молекуле углекислого газа и воды. Распад всей молекулы глюкозы происходит в течение 6 повторяющихся циклов.

Значение пентозофосфатного цикла окисления углеводов в обмене веществ велико:

1. Он поставляет восстановленный НАДФ, необходимый для биосинтеза жирных кислот, холестерина и т.д. За счет пентозного цикла на 50% покрывается потребность организма в НАДФН 2 .

2. Поставка пентозофосфатов для синтеза нуклеиновых кислот и многих коферментов.

Реакции пентозного цикла протекают в цитоплазме клетки.

При ряде патологических состояний удельный вес пентозного пути окисления глюкозы возрастает.

Непрямой путь – распад глюкозы до углекислого газа и воды с образованием 36 молекул АТФ.

1. Распад глюкозы или гликогена до пировиноградной кислоты

2. Превращение пировиноградной кислоты в ацетил- КоА

Окисление ацетил-КоА в цикле Кребса до углекислого газа и воды

С 6 Н 12 О 6 + 6 О 2 ® 6 СО 2 + 6 Н 2 О + 686 ккал

В случае аэробного превращения пировиноградная кислота подвергается окислительному декарбоксилированию с образованием ацетил- КоА, который затем окисляется до углекислого газа и воды.

Окисление пирувата до ацетил-КоА, катализируется пируватдегидрогеназной системой и протекает в несколько стадий. Суммарно реакция:

Пируват + НАДН + НS-КоА ® ацетил- КоА+ НАДН 2 + СО 2 реакция практически необратима

Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот или цикле Кребса. Этот процесс протекает в митохондриях.

Цикл состоит из 8 последовательных реакций:

В этом цикле, молекула, содержащая 2 атома углерода (уксусная кислота в форме ацетил-КоА) реагирует с молекулой щавелевоуксусной кислоты, в результате чего образуется соединение с 6 атомами углерода – лимонная кислота. В процессе дегидрирования, декарбоксилирования и подготовительной реакции лимонная кислота вновь превращается в щавелевоуксусную кислоту, которая легко соединяется с другой молекулой ацетил- КоА.

1) ацетил-КоА + оксалоацетат (ЩУК) ®лимонная кислота

цитратсинтаза

2) лимонная кислота® изолимонная кислота

аконитатгидратаза

3)изолимонная к-та+НАД®a-кетоглутаровая к-та+НАДН 2 + СО 2

изоцитратдегидрогеназа

4)a-кетоглутаровая к-та+НS-КоА+НАД®сукцинилSКоА+НАДН 2 + СО 2

5) сукцинил-КоА+ГДФ+Фн®янтарная кислота+ГТФ+НS-КоА

сукцинил КоА синтетаза

6) янтарная кислота+ФАД®фумаровая кислота+ФАДН 2

сукцинатдегидрогеназа

7) фумаровая кислота+ Н 2 О® L яблочная кислота

фумаратгидратаза

8) малат+ НАД®оксалоацетат+ НАДН 2

малатдегидрогеназа

Итого при расщеплении в тканях молекулы глюкозы синтезируется 36 молекул АТФ. Несомненно, это в энергетическом отношении более эффективный процесс чем гликолиз.

Цикл Кребса – общий конечный путь, которым завершается обмен углеводов, жирных кислот и аминокислот. Все эти вещества включаются в цикл Кребса на том или другом этапе. Далее происходит биологическое окисление или тканевое дыхание, главной особенностью которого является то, что оно протекает постепенно, через многочисленные ферментативные стадии. Этот процесс происходит в митохондриях, клеточных органеллах, в которых сосредоточено большое количество ферментов. В процессе участвуют пиридинзависимые дегидрогеназы, флавинзависимые дегидрогеназы, цитохромы, коэнзим Q – убихинон, белки, содержащие негеминовое железо.

Интенсивность дыхания управляется соотношением АТФ/АДФ. Чем меньше это отношение, тем интенсивнее идет дыхание, обеспечивая выработку АТФ.

Также цикл лимонной кислоты является в клетке главным источником двуокиси углерода для реакций карбоксилирования, с которых начинается синтез жирных кислот и глюконеогенез. Та же двуокись углерода поставляет углерод для мочевины и некоторых звеньев пуриновых и пиримидиновых колец.

Взаимосвязь между процессами углеводного и азотистого обмена также достигаются посредством промежуточных продуктов цикла лимонной кислоты.

Существует несколько путей, по которым промежуточные продукты цикла лимонной кислоты включаются в процесс липогенеза. Расщепление цитрата приводит к образованию ацетил-КоА, играющего роль предшественника в биосинтезе жирных кислот.

Изоцитрат и малат обеспечивают образование НАДФ, который расходуется в последующих восстановительных этапах синтеза жиров.

Роль ключевого фактора, определяющего превращение НАДН играет состояние адениннуклеотидов. Высокое содержание АДФ и низкое АТФ свидетельствует о малом запасе энергии. При этом НАДН вовлекается в реакции дыхательной цепи, усиливая сопряженные с запасанием энергии процессы окислительного фосфорилирования. Обратное явление наблюдается при низком содержании АДФ и высоком АТФ. Ограничивая работу системы переноса электронов, они способствуют использованию НАДН в других восстановительных реакциях, таких как синтез глутамата и глюконеогенез.

Биологическое окисление и восстановление.

Клеточным дыханием называют совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жирных кислот и аминокислот расщепляются в конечном счете до углекислоты и воды, а освобождающаяся биологически полезная энергия запасается клеткой и затем используется. Многие ферменты, катализирующие эти реакции, находятся в стенках и кристах митохондрий.

Известно, что на все проявления жизни - рост, движение, раздражимость, самовоспроизведение - клетка должна затрачивать энергию. Все живые клетки получают биологически полезную энергию за счет ферментативных реакций, в ходе которых электроны переходят с одного энергетического уровня на другой. Для большинства организмов конечным акцептором электронов служит кислород, который реагируя с электронами и ионами ионами водорода образует молекулу воды. Передача электронов кислороду происходит при участии заключенной в митохондриях ферментной системы - системы переноса электронов. АТФ служит “энергетической валютой” клетки и используется во всех реакциях обмена, требующих затраты энергии. Богатые энергией молекулы не перемещаются свободно из одной клетки в другую, а образуются в том месте. где они должны быть использованы. Например, макроэргические связи АТФ, служащие источником энергии для реакций, связанных с мышечным сокращением, образуются в самих мышечных клетках.

Процесс, в котором атомы или молекулы теряют электроны (е -) называют окислением, а обратный процесс - добавление (присоединение) электронов к атому или молекуле - восстановлением.

Простым примером окисления и восстановления служит обратимая реакция - Fe 2+ ®Fe 3+ + e -

Реакция идущая вправо - окисление, отнятие электрона

Влево - восстановление (присоединение электрона)

Все окислительные реакции (при которых происходит отнятие электрона) должны сопровождаться восстановлением - реакцией в которой электроны захватываются какой-нибудь другой молекулой, т.к. они не существуют в свободном состоянии.

Передача электронов через систему переноса электронов происходит путем ряда последовательных реакций окисления-восстановления, которые в совокупности носят название биологического окисления. Если при этом энергия потока электронов накапливается в форме макроэргических фосфатных связей (~Ф), то процесс называется окислительным фосфорилированием. Специфические соединения, которые образуют систему переноса электронов и которые попеременно окисляются и восстанавливаются, называются цитохромами. Каждый из цитохромов представляет собой белковую молекулу, к которой присоединена химическая группировка, называемая гемом, в центре гема находится атом железа, который попеременно окисляется и восстанавливается, отдавая или принимая один электрон.

Все реакции биологического окисления происходят с участием ферментов, причем каждый фермент строго специфичен и катализирует либо окисление, либо восстановление вполне определенных химических соединений.

Еще один компонент системы переноса электронов - убихинон или кофермент Q, способен присоединять или отдавать электроны.

Митохондрии содержатся в цитоплазме клетки и представляют собой микроскопические палочковидные или иной формы образования, количество которых в одной клетке составляет сотни или тысячи.

Что же представляют собой митохондрии, каково их строение? Внутреннее пространство митохондрий окружено двумя непрерывными мембранами, причем наружная мембрана гладкая, а внутренняя образует многочисленные складки или кристы. Внутримитохондриальное пространство, ограниченное внутренней мембраной, заполнено так называемым матриксом, который примерно на 50% состоит из белка и имеет очень тонкую структуру. В митохондриях сосредоточено большое количество ферментов. Наружная мембрана митохондрий не содержит ни одного из компонентов цепи дыхательных катализаторов. Исходя из ферментного набора наружной мембраны, пока трудно ответить на вопрос, в чем состоит ее назначение. Возможно она играет роль перегородки, отделяющей внутреннюю, рабочую часть митохондрии от всего остального пространства клетки. С внутренней мембраной связаны ферменты дыхательной цепи. Матрикс содержит ряд ферментов цикла Кребса.

На первом этапе глюкоза расщепляется на 2 триозы:

Таким образом, на первом этапе гликолиза на активирование глюкозы затрачивается 2 молекулы АТФ и образуется 2 молекулы 3-фософоглицеринового альдегида.

На второй стадии окисляются 2 молекулы 3-фосфоглицеринового альдегида до двух молекул молочной кислоты.

Значение лактатдегидрогеназной реакции (ЛДГ) состоит в том, чтобы в безкислородных условиях окислить НАДН 2 в НАД и сделать возможным протекание глицеро-фосфатдегидрогеназной реакции.

Суммарное уравнение гликолиза: глюкоза + 2АДФ + 2Н 3 РО 4 → 2лактат + 2АТФ + 2Н 2 О

Гликолиз протекает в цитозоле. Его регуляцию осуществляют ключевые ферменты – гексокиназа, фософофруктокиназа и пируваткиназа . Эти ферменты активируются АДФ и НАД, угнетаются АТФ и НАДН 2 .

Энергетическая эффективность анаэробного гликолиза сводится к разнице между числом израсходованных и образовавшихся молекул АТФ. Расходуется 2 молекулы АТФ на молекулу глюкозы в гексокиназной реакции фосфофруктокиназной реакции. Образуется 2 молекулы АТФ на одну молекулу триозы (1/2 глюкозы) в глицерокиназной реакции и пируваткиназной реакции. На молекулу глюкозы (2 триозы) образуется соответственно 4 молекулы АТФ. Общий баланс: 4 АТФ – 2 АТФ = 2 АТФ. 2 молекулы АТФ аккумулируют в себе ≈ 20 ккал, что составляет около 3% от энергии полного окисления глюкозы (686 ккал).

Несмотря на сравнительно невысокую энергетическую эффективность анаэробного гликолиза, он имеет важное биологическое значение, состоящее в том, что это единственный способ образования энергии в безкислородных условиях. Он в условиях дефицита кислорода обеспечивает выполнение интенсивной мышечной работы и начало выполнения мышечной работы.

У детей анаэробный гликолиз очень активен в тканях плода в условиях дефицита кислорода. Он остаётся активным в период новорожденности, постепенно сменяясь на аэробное окисление.

Дальнейшее превращение молочной кислоты .

  • При интенсивном поступлении кислорода в аэробных условиях молочная кислота превращается в ПВК и через ацетил КоА включается в цикл Кребса, давая энергию.
  • Молочная кислота транспортируется из мышц в печень, где используется на синтез глюкозы – цикл Кори.

Цикл Кори

  • При больших концентрациях молочной кислоты в тканях для предотвращения закисления (ацидоза) она может выделяться через почки.

15.2.1. Гликолиз - это ферментативный распад глюкозы в аэробных условиях до двух молекул пировиноградной кислоты (аэробный гликолиз ), а в анаэробных условиях - до двух молекул молочной кислоты (анаэробный гликолиз ). В анаэробных условиях гликолиз протекает в тканях без потребления кислорода и является единственным процессом, поставляющим АТФ, так как окислительное фосфорилирование в этих условиях не функционирует. Анаэробный гликолиз происходит во всех тканях, функционирующих в условиях гипоксии, прежде всего в скелетных мышцах. Гликолиз в эритроцитах даже в присутствии кислорода завершается образованием лактата, поскольку в этих клетках отсутствуют митохондрии.

Гликолиз протекает в цитозоле клеток организма. Этот процесс катализируется одиннадцатью ферментами, которые выделены в высокоочищенном состоянии и хорошо изучены. Условно можно разделить гликолиз на две стадии.

15.2.2. Первая стадия гликолиза является подготовительной и включает реакции превращения молекулы глюкозы в две молекулы фосфотриоз. Эта стадия сопровождается затратой молекул АТФ.

Начальной реакцией превращения глюкозы в клетке является её фосфорилирование в результате взаимодействия с АТФ (рисунок 15.1, реакция 1). Эта реакция в условиях клетки протекает только в одном направлении. Биологическая роль реакции фосфорилирования глюкозы заключается в том, что глюкозо-6-фосфат, в отличие от свободной глюкозы, не может проникать через плазматическую мембрану обратно в кровь и оказывается «запертой» в клетке. Таким образом, глюкозо-6-фосфат является ключевым метаболитом углеводного обмена, на уровне которого осуществляется интеграция различных путей превращения глюкозы в клетке.

В большинстве тканей реакцию фосфорилирования глюкозы катализирует фермент гексокиназа , которая обладает высоким сродством к глюкозе, способна также фосфорилировать фруктозу и маннозу и аллостерически ингибируется избытком глюкозо-6-фосфата. В клетках печени, кроме того, есть фермент глюкокиназа , которая имеет низкое сродство к глюкозе, не ингибируется глюкозо-6-фосфатом и не участвует в фосфорилировании других моносахаридов. Глюкокиназа эффективно функционирует только при высокой концентрации глюкозы в крови. Это способствует усвоению большого количества углеводов, поступающих в печень из кишечника в активную фазу пищеварения.

В следующей реакции глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат (рисунок 15.1 , реакция 2).

Продукт реакции изомеризации подвергается повторному фосфорилированию за счёт АТФ (рисунок 15.1 , реакция 3). Эта реакция - наиболее медленно протекающая реакция гликолиза и, подобно фосфорилированию глюкозы, необратима. Фермент - фосфофруктокиназа - является аллостерическим, активируется АДФ, АМФ, и фруктозо-2,6-бисфосфатом, а ингибируется цитратом и высокой концентрацией АТФ.

На следующем этапе фруктозо-1,6-дифосфат подвергается расщеплению на две фосфотриозы (рисунок 15.1 , реакция 4). Таким образом, химическое соединение, содержащее 6 углеродных атомов, превращается в два, содержащих по 3 атома углерода. Поэтому гликолиз называют дихотомическим путём превращения глюкозы (от слова «дихотомия» - рассечение на две части).

Далее происходит изомеризация триозофосфатов (рисунок 15.1 , реакция 5). В этой реакции диоксиацетонфосфат переходит в глицеральдегид-3-фосфат. Таким образом, в первой стадии гликолиза молекула глюкозы превращается в две молекулы глицеральдегид-3-фосфата. Поэтому в реакциях второй стадии глюкозы будет участвовать по две молекулы каждого субстрата, что необходимо учитывать при расчёте энергетического баланса данного метаболического пути.

Рисунок 15.1. Реакции первой стадии гликолиза.

15.2.3. Вторая стадия гликолиза включает реакции превращения двух молекул глицеральдегид-3-фосфата в две молекулы лактата. На этой стадии гликолиза происходит синтез молекул АТФ.

Глицеральдегид-3-фосфат подвергается дегидрированию при участии НАД-зависимой дегидрогеназы. В этой реакции происходит потребление неорганического фосфата, который включается в состав продукта реакции, содержащего макроэргическую фосфатную связь (рисунок 15.2, реакция 6), а промежуточным донором водорода служит SH-группа в активном центре фермента, которая потом регенерирует.

1,3-Дифосфоглицерат вступает в реакцию первого субстратного фосфорилирования, т.е. не сопряжённого с переносом электронов в дыхательной цепи. В этой реакции осуществляется синтез молекулы АТФ в результате переноса фосфатной группы вместе с макроэргической связью на молекулу АДФ (рисунок 15.2, реакция 7).

В следующей реакции происходит внутримолекулярное перемещение фосфатной группы 3-фосфоглицерата ко 2-му углеродному атому (рисунок 15.2, реакция 8). Тем самым облегчается последующее отщепление молекулы воды, которое приводит к появлению в продукте реакции макроэргической фосфатной связи (рисунок 15.2, реакция 9).

Фосфоенолпируват (ФЕП) вступает в реакцию второго субстратного фосфорилирования, в ходе которого образуется молекула АТФ. В отличие от первого субстратного фосфорилирования, данная реакция является необратимой в условиях клетки (рисунок 15.2, реакция 10). Фермент пируваткиназа существует в двух изоферментных формах. Изофермент, присутствующий в печёночных клетках, аллостерически ингибируется АТФ и активируется фруктозо-1,6-дифосфатом. Изофермент, присутствующий в головном мозге, мышцах и других тканях, не является аллостерическим и не принимает участия в регуляции гликолиза.

В заключительной реакции гликолиза происходит использование НАДН, образовавшегося при дегидрировании глицеральдегид-3-фосфата (см. реакцию 6). При участии НАД-зависимой лактатдегидрогеназы пируват восстанавливается в молочную кислоту (рисунок 15.2, реакция 11). Фермент существует в пяти изоферментных формах, отличающихся сродством к субстрату и распределением в тканях.



Рисунок 15.2.
Реакции второй стадии гликолиза.

Таким образом, в процессе образования лактата из глюкозы в клетке не накапливается НАДН. Это значит, что данный процесс является анаэробным и может протекать без участия кислорода (который является конечным акцептором электронов, передаваемых НАДН в дыхательную цепь). В тканях, функционирующих в условиях гипоксии,

При подсчёте энергетического баланса гликолиза следует учитывать, что каждая из реакций второй стадии этого метаболического пути повторяется дважды. Таким образом, в первой стадии было затрачено 2 молекулы АТФ, а во второй стадии путём субстратного фосфорилирования образовалось 2х2 = 4 молекулы АТФ; следовательно при окислении одной молекулы глюкозы в клетке накапливается 2 молекулы АТФ.

Вверх