Устройство электронно-лучевой трубки. Осциллографическая электронно-лучевая трубка

На экран электронно-лучевой трубки люминофоры наносятся в виде крошечных точек, причем эти точки собираются по три; в каждой тройке, или триаде, имеются одна красная, одна синяя и одна зеленая точки. На рисунке я вам показал несколько таких триад. Всего на экране трубки имеется около 500 тысяч триад. Картина, которую вы видите в телевизоре, вся состоит из светящихся точек. Там, где детали изображения более светлые, на точки попадает больше электронов, и они светятся ярче. На темные места изображения электронов попадает, соответственно, меньше. Если в цветном изображении имеется белая деталь, то повсюду в пределах этой детали все три точки в каждой триаде светятся с одинаковой яркостью. Наоборот, если в цветном изображении имеется деталь красного цвета, то повсюду в пределах этой детали светятся только красные точки каждой триады, а зеленые и синие не светятся совсем.

Вы поняли, что значит создать цветное изображение на экране телевизора? Это, во-первых, заставить электроны попадать в нужные места, то есть на те люминофорные точки, которые должны светиться, и не попадать в другие места, то есть на те точки, которые светиться не должны. Во-вторых, электроны должны попадать в нужные места в нужное время. Ведь изображение на экране постоянно меняется, и там, где в какой-то момент, например, было ярко-оранжевое пятно, через мгновение должно появиться, скажем, темно-фиолетовое. Наконец, в-третьих, в нужное место и в нужное время должно попадать нужное количество электронов. Больше - туда, где свечение должно быть ярче, и меньше - туда, где свечение темнее.

Поскольку на экране размещается почти полтора миллиона люминофорных точек, задача на первый взгляд представляется исключительно сложной. На самом деле - ничего сложного. Прежде всего в электронно-лучевой трубке имеется не один, а три отдельных нагретых катода. Точно таких, как в обычной электронной лампе. Каждый катод испускает электроны, и вокруг него создается электронное облачко. Около каждого катода находятся сетка и анод. Количество электронов, прошедших сквозь сетку к аноду, зависит от напряжения на сетке. Пока все происходит, как в обычной трехэлектродной лампе - триоде.

Какое отличие? Анод здесь не сплошной, а с отверстием в самом центре. Поэтому большинство электронов, движущихся от катода к аноду, не задерживается на аноде - они вылетают через отверстие наружу в виде круглого пучка. Конструкция, состоящая из катода, сетки и анода, так и называется: электронная пушка. Пушка как бы выстреливает пучком электронов, а количество электронов в пучке зависит от напряжения на сетке.

Нацелены электронные пушки так, чтобы пучок, вылетающий из первой пушки, всегда попадал только в красные точки триад, пучок из второй пушки - только в зеленые точки, а пучок из третьей пушки - только в синие точки. Таким образом решается одна из трех задач по образованию цветного изображения. Подавая нужные напряжения на сетки каждой из трех пушек, устанавливают нужные интенсивности красного, зеленого и синего свечения, а значит, обеспечивают нужную окраску каждой детали изображения.

После отклоняющей системы электроны попадают на экран ЭЛТ. Экран представляет тонкий слой люминофора, нанесенного на внутреннюю поверхность торцевой части баллона и способного интенсивно светиться при бомбардировке электронами.

В ряде случаев поверх слоя люминофора наносится проводящий тонкий слой алюминия. Свойства экрана определяются его

характеристиками и параметрами. К основным параметрам экранов относятся: первый и второй критические потенциалы экрана , яркость свечения , световая отдача , длительность послесвечения.

Потенциал экрана. При бомбардировке экрана потоком электронов с его поверхности возникает вторичная электронная эмиссия. Для отвода вторичных электронов стенки баллона трубки вблизи экрана покрываются проводящим графитовым слоем, который соединяется со вторым анодом. Если этого не делать, то вторичные электроны, возвращаясь на экран, вместе с первичными будут понижать его потенциал. В этом случае в пространстве между экраном и вторым анодом создается тормозящее электрическое поле, которое будет отражать электроны луча. Таким образом, для устранения тормозящего поля от поверхности непроводящего экрана необходимо отводить электрический заряд, переносимый электронным лучом. Практически единственным путем компенсации заряда является использование вторичной эмиссии. При падении электронов на экран их кинетическая энергия преобразуется в энергию свечения экрана, идет на его нагрев и вызывает вторичную эмиссию. Величина коэффициента вторичной эмиссии о определяет потенциал экрана. Коэффициент вторичной эмиссии электронов а = / в // л (/„ - ток вторичных электронов, / л - ток луча, или ток первичных электронов) с поверхности экрана в широком диапазоне изменения энергии первичных электронов превышает единицу (рис. 12.8, о < 1 на участке О А кривой при V < С/ кр1 и при 15 > С/ кр2).

При и < (У кр1 число уходящих-от экрана вторичных электронов меньше числа первичных, что приводит к накоплению отрицательного заряда на экране, формированию тормозящего поля для электронов луча в пространстве между вторым анодом и экраном и их отражению; свечение экрана отсутствует. Потенциал и л2 = Г/ крР соответствующий точке А на рис. 12.8, называется первым критическим потенциалом.

При С/ а2 = £/ кр1 потенциал экрана близок к нулю.

Если энергия пучка становится больше е£/ кр1 , то о > 1 и экран начинает заряжаться поло-

Рис. 12.8

жительно относительно последнего анода прожектора. Процесс продолжается до тех пор, пока потенциал экрана не станет приблизительно равным потенциалу второго анода. Это означает, что число уходящих с экрана электронов равно числу падающих. В диапазоне изменения энергии пучка от е£/ кр1 до С/ кр2 с > 1 и потенциал экрана достаточно близок к потенциалу анода прожектора. При и &2 > Н кр2 коэффициент вторичной эмиссии а < 1. Потенциал экрана вновь снижается, и у экрана начинает формироваться тормозящее для электронов луча поле. Потенциал и кр2 (соответствует точке В на рис. 12.8) называют вторым критическим потенциалом или предельным потенциалом.

При энергиях электронного луча выше е11 кр2 яркость свечения экрана не увеличивается. Для различных экранов Г/ кр1 = = 300...500 В, и кр2 = 5...40 кВ.

При необходимости получения больших яркостей потенциал экрана с помощью проводящего покрытия принудительно поддерживают равным потенциалу последнего электрода прожектора. Проводящее покрытие электрически соединено с этим электродом.

Светоотдача. Это параметр, который определяет отношение силы света J cв, излучаемого люминофором нормально поверхности экрана, к мощности электронного луча Р эл, падающего на экран:

Светоотдача ц определяет КПД люминофора. Не вся кинетическая энергия первичных электронов превращается в энергию видимого излучения, часть идет на нагревание экрана, вторичную эмиссию электронов и на излучение в инфракрасном и ультрафиолетовом диапазонах спектра. Светоотдачу измеряют в канделах на ватт: для различных экранов она изменяется в пределах 0,1... 15 кд/Вт. При малых скоростях электронов свечение возникает в поверхностном слое и часть света поглощается люминофором. С увеличением энергии электронов светоотдача возрастает. Однако при очень больших скоростях многие электроны пробивают слой люминофора, не производя возбуждения, и происходит снижение светоотдачи.

Яркость свечения. Это параметр, который определяется силой света, излучаемого в направлении наблюдателя одним квадратным метром равномерно светящейся поверхности. Яркость измеряют в кд/м 2 . Она зависит от свойств люминофора (характеризуется коэффициентом А), плотности тока электронного луча у, разности потенциалов между катодом и экраном II и минимального потенциала экрана 11 0 , при котором еще наблюдается люминесценция экрана. Яркость свечения подчиняется закону

Значения показателя степени п у потенциала £/ 0 для разных люминофоров изменяются в пределах соответственно 1...2,5 и

30...300 В. На практике линейный характер зависимости яркости от плотности тока у сохраняется примерно до 100 мкА/см 2 . При больших плотностях тока люминофор начинает нагреваться и выгорать. Основной способ повышения яркости - увеличение и.

Разрешающая способность. Этот важный параметр определяется как свойство ЭЛТ воспроизводить детали изображения. Разрешающая способность оценивается числом отдельно различимых светящихся точек или линий (строк), приходящихся соответственно на 1 см 2 поверхности или на 1 см высоты экрана, либо на всю высоту рабочей поверхности экрана. Следовательно, для увеличения разрешающей способности необходимо уменьшать диаметр луча, т. е. требуется хорошо сфокусированный тонкий луч диаметром в десятые доли мм. Разрешающая способность тем выше, чем меньше ток луча и больше ускоряющее напряжение. В этом случае реализуется наилучшая фокусировка. Разрешающая способность также зависит от качества люминофора (крупные зерна люминофора рассеивают свет) и наличия ореолов, возникающих из-за полного внутреннего отражения в стеклянной части экрана.

Длительность послесвечения. Время, в течение которого яркость свечения уменьшается до 1% от максимального значения, называется временем послесвечения экрана. Все экраны разделяются на экраны с очень коротким (менее 10 5 с), коротким (10“ 5 ...10“ 2 с), средним (10 2 ...10 1 с), длительным (10 Ч.Лб с) и очень длительным (более 16 с) послесвечением. Трубки с коротким и очень коротким послесвечением широко применяются при осциллографировании, а со средним послесвечением - в телевидении. В радиолокационных индикаторах обычно используются трубки с длительным послесвечением.

В радиолокационных трубках часто применяют длительно светящиеся экраны, имеющие двухслойное покрытие. Первый слой люминофора - с коротким послесвечением синего цвета - возбуждается электронным лучом, а второй - с желтым цветом свечения и длительным послесвечением - возбуждается светом первого слоя. В таких экранах удается получить послесвечение до нескольких минут.

Типы экранов. Очень большое значение имеет цвет свечения люминофора. В осциллографической технике при визуальном наблюдении экрана используются ЭЛТ с зеленым свечением, наименее утомительным для глаза. Таким цветом свечения обладает ортосиликат цинка, активированный марганцем (вилле- мит). Для фотографирования предпочтительны экраны с синим цветом свечения, свойственным вольфрамату кальция. В приемных телевизионных трубках с черно-белым изображением стараются получить белый цвет, для чего применяются люминофоры из двух компонентов: синего и желтого.

Для изготовления покрытий экранов широко применяют также следующие люминофоры: сульфиды цинка и кадмия, силикаты цинка и магния, окислы и оксисульфиды редкоземельных элементов. Люминофоры на основе редкоземельных элементов обладают целым рядом достоинств: они более стойки к различным воздействиям, чем сульфидные, достаточно эффективны, имеют более узкую спектральную полосу излучения, что особенно важно в производстве цветных кинескопов, где необходима высокая чистота цвета и т. д. В качестве примера можно привести сравнительно широко используемый люминофор на основе окисла иттрия, активированного европием У 2 0 3: Ей. Этот люминофор имеет узкую полосу излучения в красной области спектра. Хорошими характеристиками обладает также люминофор, состоящий из оксисульфида иттрия с примесью европия У 2 0 3 8: Ей, который имеет максимум интенсивности излучения в красно-оранжевой области видимого участка спектра и лучшую химическую стойкость, чем У 2 0 3: Еи-люминофор.

Алюминий химически инертен при взаимодействии с люминофорами экранов, легко наносится на поверхность испарением в вакууме и хорошо отражает свет. К недостаткам алюминированных экранов можно отнести то, что алюминиевая пленка поглощает и рассеивает электроны с энергией меньше 6 кэВ, поэтому в этих случаях светоотдача резко падает. Например, светоотдача алюминированного экрана при энергии электронов в 10 кэВ примерно на 60% больше, чем при 5 кэВ. Экраны трубок имеют прямоугольную или круглую форму.

Как работает электронно-лучевая трубка?

Электронно-лучевые трубки - это электровакуумные приборы, в которых образуется электронный пучок малого поперечного сечения, причем электронный пучок может отклоняться в желаемом направлении и, попадая на люминесцентный экран, вызывать его свечение (рис. 5.24). Электронно-лучевая трубка является электронно-оптическим преобразователем, превращающим электрический сигнал в соответствующее ему изображение в виде импульсного колебания, воспроизводимого на экране трубки. Электронный пучок образуется в электронном прожекторе (или электронной пушке), состоящем из катода и фокусирующих электродов. Первый фокусирующий электрод, который называют также модулятором , выполняет функции сетки с отрицательным смещением, направляющей электроны к оси трубки. Изменение напряжения смещения сетки влияет на число электронов, а следовательно, на яркость получаемого на экране изображения. За модулятором (в направлении к экрану) расположены следующие электроды, задачей которых является фокусирование и ускорение электронов. Они действуют на принципе электронных линз. Фокусирующе-ускоряющие электроды называются анодами и на них подается положительное напряжение. В зависимости от типа трубки анодные напряжения имеют значения от нескольких сотен вольт до нескольких десятков киловольт.

Рис. 5.24. Схематическое изображение электронно-лучевой трубки:

1 - катод; 2 - анод I: 3 - анод II; 4 - горизонтальные отклоняющие пластины; 5 - электронный пучок; 6 - экран; 7 - вертикальные отклоняющие пластины; 8 - модулятор


В некоторых трубках фокусировку пучка производят с помощью магнитного поля путем использования катушек, расположенных снаружи лампы, вместо электродов, находящихся внутри трубки и создающих фокусирующее электрическое поле. Отклонение пучка также осуществляется двумя методами: с помощью электрического или магнитного поля. В первом случае в трубке помещают отклоняющие пластины, во втором - снаружи трубки монтируют отклоняющие катушки. Для отклонения как в горизонтальном, так и в вертикальном направлениях используют пластины (или катушки) вертикального или горизонтального отклонения луча.

Экран трубки покрыт изнутри материалом - люминофором, который светится под влиянием бомбардировки электронами. Люминофоры отличаются различным цветом свечения и разным временем свечения после прекращения возбуждения, которое называется временем послесвечения . Обычно оно составляет от долей секунды до нескольких часов в зависимости от назначения трубки.

Пожалуй, нет такого человека, который бы в своей жизни не сталкивался с приборами, в конструкцию которых входит электронно-лучевая трубка (или ЭЛТ). Сейчас подобные решения активно вытесняются своими более современными аналогами на основе жидкокристаллических экранов (ЖК). Однако существует ряд областей, в которых электронно-лучевая трубка по-прежнему является незаменимой. Например, в высокоточных осциллографах ЖК использовать нельзя. Тем не менее, очевидно одно - прогресс устройств отображения информации в конечном итоге приведет к полному отказу от ЭЛТ. Это вопрос времени.

История появления

Первооткрывателем можно считать Ю. Плюккера, который в 1859 году, изучая поведение металлов при различных внешних воздействиях, обнаружил явление излучения (эмиссии) элементарных частиц - электронов. Формируемые пучки частиц получили название катодных лучей. Также он обратил внимание на возникновение видимого свечения некоторых веществ (люминофор) при попадании на них электронных лучей. Современная электронно-лучевая трубка способна создавать изображение именно благодаря этим двум открытиям.

Через 20 лет опытным путем было установлено, что направлением движения излучаемых электронов можно управлять воздействием внешнего магнитного поля. Это легко объяснить, если вспомнить, что перемещающиеся носители отрицательного заряда характеризуются магнитным и электрическим полями.

В 1895 году К. Ф. Браун доработал систему управления в трубке и тем самым сумел менять вектор направленности потока частиц не только полем, но и особым зеркалом, способным вращаться, что открыло совершенно новые перспективы использования изобретения. В 1903 году Венельт разместил внутри трубки катод-электрод в виде цилиндра, что дало возможность управлять интенсивностью излучаемого потока.

В 1905 году Эйнштейн сформулировал уравнения расчета фотоэффекта и через 6 лет было продемонстрировано работающее устройство передачи изображений на расстояния. Управление лучом осуществлялось а за величину яркости отвечал конденсатор.

Во время начала производства первых моделей ЭЛТ промышленность была не готова создавать экраны с большим размером диагонали, поэтому в качестве компромисса применялись увеличительные линзы.

Устройство электронно-лучевой трубки

С тех пор устройство было доработано, однако изменения носят эволюционный характер, так как ничего принципиально нового в ход работы добавлено не было.

Стеклянный корпус начинается трубкой с конусообразным расширением, образующим экран. В устройствах цветного изображения внутренняя поверхность с определенным шагом покрыта тремя видами люминофора дающими свой цвет свечения при попадании пучка электронов. Соответственно, есть три катода (пушки). Для того чтобы отсеять расфокусировавшиеся электроны и обеспечить точное попадание нужного луча в нужную точку экрана, между катодной системой и слоем люминофора размещают стальную решетку - маску. Ее можно сравнить с трафаретом, отсекающим все лишнее.

С поверхности подогреваемых катодов начинается эмиссия электронов. Они устремляются в сторону анода (электрод, с положительным зарядом), подключенного к конусной части трубки. Далее пучки фокусируются специальной катушкой и попадают в поле отклоняющей системы. Проходя через решетку, падают на нужные точки экрана, вызывая преобразование своей в свечение.

Вычислительная техника

Мониторы с электронно-лучевой трубкой нашли широкое применение в составе компьютерных систем. Простота конструкции, высокая надежность, точная цветопередача и отсутствие задержек (тех самых миллисекунд реакции матрицы в ЖК) - вот их основные преимущества. Однако в последнее время, как уже указывалось, ЭЛТ вытесняется более экономными и эргономичными ЖК-мониторами.

Применение электронно-лучевой трубки

Электронно-лучевые трубки применяются в осциллографах для измерения напряжения и фазовых углов, анализа формы кривой силы тока или напряжения и т. д. Эти трубки используются в телевизионных и радиолокационных установках.

Электронно-лучевые трубки бывают разных типов. По способу получения электронного луча они делятся на трубки с холодным и накаленным катодом. Трубки с холодным катодом используются сравнительно редко, так как для их работы требуются очень высокие напряжения (30-70 кВ). Трубки с накаленным катодом имеют широкое применение. Эти трубки по способу управления электронным лучом также разделяются на два вида: электростатические и магнитные. В электростатических трубках управление электронным лучом осуществляется с помощью электрического поля, а в магнитных - с помощью магнитного поля.

Электронно-лучевые трубки с электростатическим управлением применяются в осциллографах и бывают чрезвычайно разнообразны по конструктивному выполнению. Учащихся достаточно ознакомить с принципом устройства такой трубки, содержащей основные типовые элементы. Этим целям отвечает трубка типа 13ЛОЗ7, которая представлена на таблице с некоторыми упрощениями.

Электронно-лучевая трубка представляет собой хорошо вакуумированный стеклянный баллон, внутри которого находятся электроды. Широкий торец трубки - экран - с внутренней стороны покрывается флуоресцирующим веществом. Вещество экрана светится при ударах электронов. Источником электронов служит катод косвенного накала. Катод состоит из нити накала 7, вставленной в тонкую фарфоровую трубочку (изолятор), на которую надет цилиндр 6 с оксидным покрытием торца (катод), благодаря чему достигается излучение электронов только в одном направлении. Вылетевшие из катода электроны устремляются к анодам 4 и 3, имеющим довольно высокий потенциал относительно катода (несколько сотен вольт). Для придания пучку электронов формы луча и его фокусировки на экране пучок проходит через ряд электродов. Однако следует обратить внимание уча-щихся только на три электрода: модулятор (управляющий цилиндр) 5, первый анод 4 и второй анод 3. Модулятор представляет собой трубчатый электрод, на который подается отрицательный потенциал относительно катода. Благодаря этому проходящий через модулятор электронный пучок будет стягиваться в узкий пучок (луч) и направляться электрическим полем через отверстие в аноде в сторону экрана. Повышая или понижая потенциал управляющего электрода, можно регулировать коли-чество электронов в луче, т. е. интенсивность (яркость) свечения экрана. С помощью анодов не только создается ускоряющее поле (обеспечивается разгон электронов), но, изменяя потенциал одного из них, можно более точно фокусировать электронный луч на экране и получить большую резкость светящейся точки. Обычно фокусировку осуществляют путем изменения потенциала первого анода, который называется фокусирующим.

Электронный луч, выйдя из отверстия в аноде, проходит между двумя парами отклоняющих пластин 1,2 и попадает на экран, вызывая его свечение.

Подавая напряжение на отклоняющие пластины, можно вызвать отклонение луча и смещение светящегося пятна от центра экрана. Величина и направление смещения зависят от напряжения, поданного на пластины, и полярности пластин. На таблице показан случай, когда напряжение подано только на вертикальные пластины 2. При указанной полярности пластин смещение электронного луча под действием сил электрического поля происходит вправо. Если подать напряжение на го-ризонтальные пластины 1, то смещение луча будет происходить в вертикальном направлении.

В нижней части таблицы приведен способ управления лучом с помощью магнитного поля, созданного двумя взаимно перпендикулярными катушками (каждая катушка разделена на две секции), оси которых имеют вертикальное и горизонтальное направления. На таблице показан случай, когда в горизонтальной катушке ток отсутствует и вертикальная катушка обеспечивает смещение луча только в горизонтальном направлении.

Магнитное поле горизонтальной катушки вызывает смещение луча в вертикальном направлении. Совместное действие магнитных полей двух катушек обеспечивает движение луча по всему экрану.

Магнитные трубки применяются в телевизорах.



Вверх