Кинетическая энергия вращающегося тела. Кинетическая энергия вращающеюся тела

Основные динамические характеристики вращательного движения - момент импульса относительно оси вращения z:

и кинетическая энергия

В общем случае, энергия при вращении с угловой скоростью находится по формуле:

, где - тензор инерции .

В термодинамике

Точно по тем же самым рассуждениям, как и в случае поступательного движения, равнораспределение подразумевает, что при тепловом равновесии средняя вращательная энергия каждой частицы одноатомного газа: (3/2)k B T . Аналогично, теорема о равнораспределении позволяет вычислить среднеквадратичную угловую скорость молекул.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Энергия вращательного движения" в других словарях:

    У этого термина существуют и другие значения, см. Энергия (значения). Энергия, Размерность … Википедия

    ДВИЖЕНИЯ - ДВИЖЕНИЯ. Содержание: Геометрия Д....................452 Кинематика Д...................456 Динамика Д....................461 Двигательные механизмы............465 Методы изучения Д. человека.........471 Патология Д. человека............. 474… … Большая медицинская энциклопедия

    Кинетическая энергия энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Более строго, кинетическая энергия есть разность между полной… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    - (франц. marées, нем. Gezeiten, англ. tides) периодические колебания уровня воды вследствие притяжения Луны и Солнца. Общие сведения. П. всего заметнее по берегам океанов. Тотчас после малой воды наибольшего отлива, уровень океана начинает… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность … Википедия

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия по окончании возмущающего… … Википедия

Рассмотрим вначале твердое тело, вращающееся вокруг неподвижной оси OZ с угловой скоростью ω (рис.5.6). Разобьем тело на элементарные массы . Линейная скорость элементарной массы равна , где - ее расстояние от оси вращения. Кинетическая энергия i -той элементарной массы будет равна

.

Кинетическая энергия всего тела слагается из кинетических энергий его частей, поэтому

.

Учитывая то, что сумма в правой части этого соотношения представляет момент инерции тела относительно оси вращения, получим окончательно

. (5.30)

Формулы кинетической энергии вращающегося тела (5.30) подобны соответствующим формулам для кинетической энергии поступательного движения тела. Они получаются из последних формальной заменой .

В общем случае движение твердого тела можно представить в виде суммы движений – поступательного со скоростью, равной скорости центра масс тела, и вращения с угловой скоростью вокруг мгновенной оси, проходящей через центр масс. В этом случае выражение для кинетической энергии тела принимает вид

.

Найдем теперь работу, совершаемую моментом внешних сил, при вращении твердого тела. Элементарная работа внешних сил за время dt будет равна изменению кинетической энергии тела

Взяв дифференциал от кинетической энергии вращательного движения, найдем ее приращение

.

В соответствии с основным уравнением динамики для вращательного движения

С учетом данных соотношений, приведем выражение элементарной работы к виду

где - проекция результирующего момента внешних сил на направление оси вращения OZ, - угол поворота тела за рассматриваемый промежуток времени.

Интегрируя (5.31), получим формулу для работы внешних сил, действующих на вращающееся тело

В случае, если , то формула упрощается

Таким образом, работа внешних сил при вращении твердого тела относительно неподвижной оси определяется действием проекции момента этих сил на данную ось.

Гироскоп

Гироскопом называется быстро вращающееся симметричное тело, ось вращения которого может изменять свое направление в пространстве. Чтобы ось гироскопа могла свободно поворачиваться в пространстве, гироскоп помещают в так называемом кардановом подвесе (рис.5.13). Маховик гироскопа вращается во внутренней кольцевой обойме вокруг оси С 1 С 2 , проходящей через его центр тяжести. Внутренняя обойма в свою очередь может вращаться во внешней обойме вокруг оси В 1 В 2 , перпендикулярной к С 1 С 2 . Наконец, наружная обойма может свободно вращаться в подшипниках стойки вокруг оси А 1 А 2 , перпендикулярной к осям С 1 С 2 и В 1 В 2 . Все три оси пересекаются в некоторой неподвижной точке О, называемой центром подвеса или точкой опоры гироскопа. Гироскоп в кардановом подвесе имеет три степени свободы и, следовательно, может совершать любые повороты вокруг центра подвеса. Если центр подвеса гироскопа совпадает с его центром тяжести, то результирующий момент сил тяжести всех частей гироскопа относительно центра подвеса равен нулю. Такой гироскоп называют уравновешенным.

Рассмотрим теперь наиболее важные свойства гироскопа, которые и нашли ему широкое применение в различных областях.

1) Устойчивость.

При любых поворотах стойки уравновешенного гироскопа его ось вращения сохраняет неизменное направление по отношению к лабораторной системе отсчета. Это связано с тем, что момент всех внешних сил, равный моменту сил трения, очень мал и практически не вызывает изменения момента импульса гироскопа, т.е.

Поскольку момент импульса направлен вдоль оси вращения гироскопа, то ее ориентация должна сохраняться неизменной.

Если внешняя сила действует в течение короткого времени, то интеграл, определяющий приращение момента импульса, будет мал

. (5.34)

Значит, при кратковременных воздействиях даже больших сил движение уравновешенного гироскопа изменяется мало. Гироскоп как бы сопротивляется всяким попыткам изменить величину и направление его момента импульса. С этим и связана замечательная устойчивость, которую приобретает движение гироскопа после приведения его в быстрое вращение. Это свойство гироскопа широко используется для автоматического управления движением самолетов, судов, ракет и прочих аппаратов.

Если же действовать на гироскоп длительное время постоянным по направлению моментом внешних сил, то ось гироскопа устанавливается, в конце концов, по направлению момента внешних сил. Данное явление используется в гирокомпасе. Этот прибор представляет собой гироскоп, ось которого может свободно поворачиваться в горизонтальной плоскости. Вследствие суточного вращения Земли и действия момента центробежных сил ось гироскопа поворачивается так, чтобы угол между и стал минимальным (рис.5.14). Это соответствует положению оси гироскопа в плоскости меридиана.

2). Гироскопический эффект.

Если к вращающемуся гироскопу приложить пару сил и , стремящуюся повернуть его около оси, перпендикулярной оси вращения, то он станет поворачиваться вокруг третьей оси, перпендикулярной к первым двум (рис.5.15). Такое необычное поведение гироскопа получило название гироскопического эффекта. Оно объясняется тем, что момент пары сил направлен вдоль оси О 1 О 1 и изменение за время вектора на величину будет иметь тоже направление. В результате новый вектор повернется относительно оси О 2 О 2 . Таким образом, противоестественное на первый взгляд поведение гироскопа полностью соответствует законам динамики вращательного движения

3). Прецессия гироскопа.

Прецессией гироскопа называется конусообразное движение его оси. Оно происходит в том случае, когда момент внешних сил, оставаясь постоянным по величине, поворачивается одновременно с осью гироскопа, образуя с ней всё время прямой угол. Для демонстрации прецессии может служить велосипедное колесо с наращенной осью, приведенное в быстрое вращение (рис.5.16).

Если колесо подвесить за наращенный конец оси, то его ось начнет прецессировать вокруг вертикальной оси под действием собственного веса. Демонстрацией прецессии может служить и быстро вращающийся волчок.

Выясним причины прецессии гироскопа. Рассмотрим неуравновешенный гироскоп, ось которого может свободно поворачиваться вокруг некоторой точки О (рис.5.16). Момент сил тяжести, приложенный к гироскопу, равен по величине

где - масса гироскопа, - расстояние от точки О до цента масс гироскопа, - угол, образованный осью гироскопа с вертикалью. Вектор направлен перпендикулярно к вертикальной плоскости, проходящей через ось гироскопа.

Под действием этого момента момент импульса гироскопа (его начало помещено в точку О) получит за время приращение , а вертикальная плоскость, проходящая через ось гироскопа, повернется на угол . Вектор все время перпендикулярен к , следовательно, не изменяясь по величине, вектор изменяется только по направлению. При этом спустя время взаимное расположение векторов и будет таким же, как и в начальный момент. В итоге ось гироскопа будет непрерывно поворачиваться вокруг вертикали, описывая конус. Такое движение называется прецессией.

Определим угловую скорость прецессии. Согласно рис.5.16 угол поворота плоскости, проходящей через ось конуса и ось гироскопа, равен

где - момент импульса гироскопа, а - его приращение за время .

Разделив на , с учетом отмеченных соотношений и преобразований, получим угловую скорость прецессии

. (5.35)

Для гироскопов, применяющихся в технике, угловая скорость прецессии бывает в миллионы раз меньше скорости вращения гироскопа .

В заключении отметим, что явление прецессии наблюдается и у атомов вследствие орбитального движения электронов.

Примеры применения законов динамики

При вращательном движении

1. Рассмотрим некоторые примеры на закон сохранения момента импульса, которые можно осуществить с помощью скамьи Жуковского. В простейшем случае скамья Жуковского представляет собой платформу в форме диска (кресло), который может свободно вращаться вокруг вертикальной оси на шариковых подшипниках (рис.5.17). Демонстратор садится или становится на скамью, после чего ее приводят во вращательное движение. Вследствие того, что силы трения благодаря применению подшипников очень малы, момент импульса системы, состоящей из скамьи и демонстратора, относительно оси вращения не может меняться во времени, если система предоставлена самой себе. Если демонстратор держит в руках тяжелые гантели и разводит руки в стороны, то он увеличит момент инерции системы, а потому должна уменьшится угловая скорость вращения, чтобы остался неизменным момент импульса.

По закону сохранения момента импульса составим уравнение для данного случая

где - момент инерции человека и скамьи, и - момент инерции гантелей в первом и втором положениях, и - угловые скорости системы.

Угловая скорость вращения системы при разведении гантелей в сторону будет равна

.

Работу, совершенную человеком при перемещении гантелей, можно определить через изменение кинетической энергии системы

2. Приведем еще один опыт со скамьей Жуковского. Демонстратор садится или становится на скамью и ему передают быстро вращающееся колесо с вертикально направленной осью (рис.5.18). Затем демонстратор поворачивает колесо на 180 0 . При этом изменение момента импульса колеса целиком передается скамье и демонстратору. В результате скамья вместе с демонстратором приходит во вращение с угловой скоростью, определяемой на основании закона сохранения момента импульса.

Момент импульса системы в начальном состоянии определяется только моментом импульса колеса и равен

где - момент инерции колеса, - угловая скорость его вращения.

После поворота колеса на угол 180 0 момент импульса системы будет уже определяться суммой момента импульса скамьи с человеком и момента импульса колеса. С учетом того, что вектор момента импульса колеса изменил свое направление на противоположное, а его проекция на вертикальную ось стала отрицательной, получим

,

где - момент инерции системы «человек-платформа», - угловая скорость вращения скамьи с человеком.

По закону сохранения момента импульса

и .

В итоге, находим скорость вращения скамьи

3. Тонкий стержень массой m и длиной l вращается с угловой скоростью ω=10 с -1 в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Продолжая вращаться в той же плоскости, стержень перемещается так, что ось вращения теперь проходит через конец стержня. Найти угловую скорость во втором случае.

В данной задаче за счет того, что распределение массы стержня относительно оси вращения изменяется, момент инерции стержня также изменяется. В соответствии с законом сохранения момента импульса изолированной системы, имеем

Здесь - момент инерции стержня относительно оси, проходящей через середину стержня; - момент инерции стержня относительно оси, проходящей через его конец и найденный по теореме Штейнера.

Подставляя данные выражения в закон сохранения момента импульса, получим

,

.

4. Стержень длиной L =1,5 м и массой m 1 =10 кг подвешен шарнирно за верхний конец. В середину стержня ударяет пуля массой m 2 =10 г, летящая горизонтально со скоростью =500 м/с, и застревает в стержне. На какой угол отклонится стержень после удара?

Представим на рис. 5.19. систему взаимодействующих тел «стержень-пуля». Моменты внешних сил (сила тяжести, реакция оси) в момент удара равны нулю, поэтому можем воспользоваться законом сохранения момента импульса

Момент импульса системы до удара равен моменту импульса пули относительно точки подвеса

Момент импульса системы после неупругого удара определится по формуле

,

где - момент инерции стержня относительно точки подвеса, - момент инерции пули, - угловая скорость стержня с пулей непосредственно после удара.

Решая после подстановки полученное уравнение, найдем

.

Воспользуемся теперь законом сохранения механической энергии. Приравняем кинетическую энергию стержня после попадания в него пули его потенциальной энергии в наивысшей точке подъема:

,

где - высота поднятия центра масс данной системы.

Проведя необходимые преобразования, получим

Угол отклонения стержня связан с величиной соотношением

.

Проведя вычисления, получим =0,1p=18 0 .

5. Определить ускорения тел и натяжения нити на машине Атвуда, предполагая, что (рис.5.20). Момент инерции блока относительно оси вращения равен I , радиус блока r . Массой нити пренебречь.

Расставим все силы, действующие на грузы и блок, и составим для них уравнения динамики

Если нет проскальзывания нити по блоку, то линейное и угловое ускорение связаны между собой соотношением

Решая эти уравнения, получим

После чего находим T 1 и T 2 .

6. К шкиву креста Обербека (рис.5.21) прикреплена нить, к которой подвешен груз массой M = 0,5 кг. Определить за какое время груз опускается с высоты h =1 м до нижнего положения. Радиус шкива r =3 см. На кресте укреплены четыре груза массой m =250 г каждый на расстоянии R = 30 см от его оси. Моментом инерции самого креста и шкива пренебречь по сравнению с моментом инерции грузов.

Выражение для кинетической энергии вращающегося тела с учетом, что линейная скорость произвольной материальной точки, составляющей тело, относительно оси вращения равна имеет вид

где момент инерции тела относительно выбранной оси вращения, его угловая скорость относительно этой оси, момент импульса тела относительно оси вращения.

Если тело совершает поступательно вращательное движение, то вычисление кинетической энергии зависит от выбора полюса, относительно которого описывается движение тела. Конечный результат будет один и тот же. Так, если для катящегося со скоростью vбез проскальзывания круглого тела с радиусом R и коэффициентом инерции k полюс взять в его ЦМ, в точке C, то его момент инерции , а угловая скорость вращения вокруг оси С . Тогда кинетическая энергия тела .

Если полюс взять в точке О касания тела и поверхности, через которую проходит мгновенная ось вращения тела, то его момент инерции относительно оси О станет равным . Тогда кинетическая энергия тела с учетом, что относительно параллельных осей угловые скорости вращения тела одинаковы и вокруг оси О тело совершает чистое вращение, будет равна . Результат тот же.

Теорема о кинетической энергии тела, совершающего сложное движение, будет иметь такой же вид, что и для его поступательного движения: .

Пример 1. К концу нити, накрученной на цилиндрический блок радиуса R и массой M, привязано тело массой m. Тело поднимают на высоту h и отпускают (рис.65). После неупругого рывка нити тело и блок сразу же начинают двигаться совместно. Какое тепло выделится при рывке? Чему будут равны ускорение движения тела и натяжение нити после рывка? Какими будут скорость тела и пройденный им путь после рывка нити через время t?

Дано : M, R, m, h, g, t. Найти : Q -?,a - ?, T - ?,v -?, s - ?

Решение : Скорость тела перед рывком нити . После рывка нити блок и тело придут во вращательное движение относительно оси блока О и будут вести себя как тела с моментами инерции относительно этой оси, равными и . Их общий момент инерции относительно оси вращения .

Рывок нити – быстрый процесс и при рывке имеет место закон сохранения момента импульса системы блок-тело, который ввиду того, что тело и блок сразу же после рывка начинают двигаться совместно, имеет вид: . Откуда начальная угловая скорость вращения блока , а начальная линейная скорость тела .

Кинетическая энергия системы ввиду сохранения ее момента импульса сразу после рывка нити равна . Выделившееся при рывке тепло согласно закону сохранения энергии



Динамические уравнения движения тел системы после рывка нити не зависят от их начальной скорости. Для блока оно имеет вид или , а для тела . Складывая эти два уравнения, получим . Откуда ускорение движения тела . Сила натяжения нити

Кинематические уравнения движения тела после рывка будут иметь вид , где все параметры известны.

Ответ: . .

Пример 2 . Двум круглым телам с коэффициентами инерции (полый цилиндр) и (шар), находящимся в основании наклонной плоскости с углом наклона α сообщают одинаковые начальные скорости, направленные вверх вдоль наклонной плоскости. На какую высоту и за какое время поднимутся тела на эту высоту? Каковы ускорения подъема тел? Во сколько раз отличаются высоты, времена и ускорения подъема тел? Тела движутся вдоль наклонной плоскости без проскальзывания.

Дано : . Найти :

Решение : На тело действуют: сила тяжести mg , реакция наклонной плоскости N , и сила трения сцепления (рис.67). Работы нормальной реакции и силы трения сцепления (нет проскальзывания и в точке сцепления тела и плоскости тепло не выделяется.) равны нулю: , поэтому для описания движения тел возможно применение закона сохранения энергии: . Откуда .

Времена и ускорения движения тел найдем из кинематических уравнений . Откуда , . Отношение высот, времен и ускорений подъема тел:

Ответ : , , , .

Пример 3 . Пуля массой , летящая со скоростью , ударяет в центр шара массой M и радиусом R, прикрепленному к концу стержня массой mи длиной l, подвешенному в точке О за его второй конец, и вылетает из него со скоростью (рис.68). Найти угловую скорость вращения системы стержень-шар сразу же после удара и угол отклонения стержня после удара пули.

Дано : . Найти :

Решение: Моменты инерции стержня и шара относительно точки О подвеса стержня по теореме Штейнера: и . Полный момент инерции системы стержень-шар . Удар пули – быстрый процесс, и имеет место закон сохранения момента импульса системы пуля-стержень-шар (тела после столкновения приходят во вращательное движение): . Откуда угловая скорость движения системы стержень-шар сразу же после удара .



Положение ЦМ системы стержень-шар относительно точки подвеса О: . Закон сохранения энергии для ЦМ системы после удара с учетом закона сохранения момента импульса системы при ударе имеет вид . Откуда высота поднятия ЦМ системы после удара . Угол отклонения стержня после удара определяется условием .

Ответ: , , .

Пример 4 . К круглому телу массой m и радиусом R, с коэффициентом инерции k, вращающемуся с угловой скоростью , прижата с силой N колодка (рис.69). Через какое время остановится цилиндр и какое тепло выделится при трении колодки о цилиндр за это время? Коэффициент трения между колодкой и цилиндром равен .

Дано : Найти :

Решение : Работа силы трения до остановки тела по теореме о кинетической энергии равна . Выделившееся при вращении тепло .

Уравнение вращательного движения тела имеет вид . Откуда угловое ускорение его замедленного вращения . Время вращения тела до его остановки .

Ответ : , .

Пример 5 . Круглое тело массой m и радиусом R с коэффициентом инерции k раскручивают до угловой скорости против часовой стрелки и ставят на горизонтальную поверхность, стыкующуюся с вертикальной стенкой (рис.70). Через какое время тело остановится и сколько оно сделает оборотов до остановки? Чему будет равно тепло, выделившееся при трении тела о поверхности за это время? Коэффициент трения тела о поверхности равен .

Дано : . Найти :

Решение : Тепло, выделившееся при вращении тела до его остановки, равно работе сил трения, которая может быть найдена по теореме о кинетической энергии тела. Имеем .

Реакция горизонтальной плоскости . Силы трения, действующие на тело со стороны горизонтальной и вертикальной поверхностей равны: и .Из системы этих двух уравнений получим и .

С учетом этих соотношений уравнение вращательного движения тела имеет вид ( . Откуда угловое ускорение вращения тела равно . Тогда время вращения тела до его остановки , а число сделанных им при этом оборотов .

Ответ : , , , .

Пример 6 . Круглое тело с коэффициентом инерции k скатывается без проскальзывания с вершины полусферы радиусом R, стоящей на горизонтальной поверхности (рис.71). На какой высоте и с какой скоростью оно оторвется от полусферы и с какой скоростью упадет на горизонтальную поверхность?

Дано : k, g, R. Найти :

Решение : На тело действуют силы . Работы и 0, (нет проскальзывания и тепло в точке сцепления полусферы и шара не выделяется) поэтому для описания движения тела возможно применение закона сохранения энергии. Второй закон Ньютона для ЦМ тела в точке его отрыва от полусферы с учетом, что в этой точке имеет вид , откуда . Закон сохранения энергии для начальной точки и точки отрыва тела имеет вид . Откуда высота и скорость отрыва тела от полусферы равны , .

После отрыва тела от полусферы изменяется только его поступательная кинетическая энергия, поэтому закон сохранения энергии для точек отрыва и падения тела на землю имеет вид . Откуда с учетом получим . Для тела, скользящего по поверхности полусферы без трения, k=0 и , , .

Ответ: , , .

Кинетическая энергия вращения

Лекция 3. Динамика твердого тела

План лекции

3.1. Момент силы.

3.2. Основные уравнения вращательного движения. Момент инерции.

3.3. Кинетическая энергия вращения.

3.4. Момент импульса. Закон сохранения момента импульса.

3.5. Аналогия между поступательным и вращательным движением.

Момент силы

Рассмотрим движение твердого тела вокруг неподвижной оси. Пусть твердое тело имеет неподвижную ось вращения ОО (рис.3.1 ) и к нему приложена произвольная сила .

Рис. 3.1

Разложим силу на две составляющие силы , сила лежит в плоскости вращения, а сила – параллельна оси вращения. Затем силу разложим на две составляющие: – действующую вдоль радиус-вектора и – перпендикулярную ему.

Не любая сила, приложенная к телу, будет вращать его. Силы и создают давление на подшипники, но не вращают его.

Сила может вывести тело из равновесия, а может – нет в зависимости от того, в каком месте радиус-вектора она приложена. Поэтому вводится понятие момента силы относительно оси. Моментом силы относительно оси вращения называется векторное произведение радиуса-вектора на силу .

Вектор направлен по оси вращения и определяется правилом векторного произведения или правилом правого винта, или правилом буравчика.

Модуль момента силы

где α – угол между векторами и .

Из рис.3.1. видно, что .

r 0 – кратчайшее расстояние от оси вращения до линии действия силы и называется плечом силы. Тогда момент силы можно записать

М = F r 0 . (3.3)

Из рис. 3.1.

где F – проекция вектора на направление, перпендикулярное вектору радиус-вектору . В этом случае момент силы равен

. (3.4)

Если на тело действует несколько сил, то результирующий момент силы равен векторной сумме моментов отдельных сил, но так как все моменты направлены вдоль оси, то их можно заменить алгебраической суммой. Момент будет считаться положительным, если он вращает тело по часовой стрелке и отрицательным, если против часовой стрелки. При равенстве нулю всех моментов сил (), тело будет находиться в равновесии.

Понятие момента силы можно продемонстрировать с помощью «капризной катушки». Катушку с нитками тянут за свободный конец нитки (рис. 3.2 ).

Рис. 3.2

В зависимости от направления силы натяжения нити катушка перекатывается в ту или иную сторону. Если тянуть под углом α , то момент силы относительно оси О (перпендикулярной к рисунку) вращает катушку против часовой стрелки и она откатывается назад. В случае натяжения под углом β вращающий момент направлен против часовой стрелки и катушка катится вперед.

Используя условие равновесия (), можно сконструировать простые механизмы, которые являются «преобразователями» силы, т.е. прикладывая меньшую силу можно поднимать и перемещать разного веса грузы. На этом принципе основаны рычаги, тачки, блоки разного рода, которые широко используются в строительстве. Для соблюдения условия равновесия в строительных подъемных кранах для компенсации момента силы, вызванного весом груза, всегда имеется система противовесов, создающая момент силы обратного знака.

3.2. Основное уравнение вращательного
движения. Момент инерции

Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси ОО (рис.3.3 ). Разобьём мысленно это тело на элементы массами Δm 1 , Δm 2 , …, Δm n . При вращении эти элементы опишут окружности радиусами r 1 , r 2 , …, r n . На каждый элемент действуют соответственно силы F 1 , F 2 , …, F n . Вращение тела вокруг оси ОО происходит под действием полного момента сил М .

М = М 1 + М 2 + … +М n (3.4)

где М 1 = F 1 r 1, М 2 = F 2 r 2, …, M n = F n r n

Согласно II закону Ньютона, каждая сила F , действующая на элемент массой Dm , вызывает ускорение данного элемента a , т.е.

F i = Dm i a i (3.5)

Подставив в (3.4) соответствующие значения, получим

Рис. 3.3

Зная связь между линейным угловым ускорением ε () и что угловое ускорение для всех элементов одинаково, формула (3.6) будет иметь вид

М = (3.7)

=I (3.8)

I – момент инерции тела относительно неподвижной оси.

Тогда мы получим

М = I ε (3.9)

Или в векторном виде

(3.10)

Это уравнение является основным уравнением динамики вращательного движения. По форме оно сходно с уравнением II закона Ньютона. Из (3.10) момент инерции равен

Таким образом, моментом инерции данного тела называется отношение момента силы к вызываемому им угловому ускорении. Из (3.11) видно, что момент инерции является мерой инертности тела по отношению к вращательному движению. Момент инерции играет ту же роль, что и масса при поступательном движении. Единица измерения в СИ [I ] = кг·м 2 . Из формулы (3.7) следует, что момент инерции характеризует распределение масс частиц тела относительно оси вращения.

Итак, момент инерции элемента массы ∆m движущегося по окружности радиусом r равен

I = r 2 Dm (3.12)

I= (3.13)

В случае непрерывного распределения масс сумму можно заменить интегралом

I= ∫ r 2 dm (3.14)

где интегрирование производится по всей массе тела.

Отсюда видно, что момент инерции тела зависит от массы и её распределения относительно оси вращения. Это можно продемонстрировать на опыте (рис.3.4 ).

Рис. 3.4

Два круглых цилиндра, один полый (например, металлический), другой сплошной (деревянный) с одинаковыми длинами, радиусами и массами начинают одновременно скатываться. Полый цилиндр, обладающий большим моментом инерции, отстанет от сплошного.

Вычислить момент инерции можно, если известна масса m и ее распределение относительно оси вращения. Наиболее простой случай – кольцо, когда все элементы массы расположены одинаково от оси вращения (рис. 3.5 ):

I = (3.15)

Рис. 3.5

Приведем выражения для моментов инерции разных симметричных тел массой m .

1. Момент инерции кольца , полого тонкостенного цилиндра относительно оси вращения совпадающей с осью симметрии.

, (3.16)

r – радиус кольца или цилиндра

2. Для сплошного цилиндра и диска момент инерции относительно оси симметрии

(3.17)

3. Момент инерции шара относительно оси, проходящей через центр

(3.18)

r – радиус шара



4. Момент инерции тонкого стержня длинной l относительно оси, перпендикулярной стержню и проходящей через его середину

(3.19)

l – длина стержня.

Если ось вращения не проходит через центр масс, то момент инерции тела относительно этой оси определяется теоремой Штейнера.

(3.20)

Согласно этой теореме, момент инерции относительно произвольной оси О’O’ ( ) равен моменту инерции относительно параллельной оси, проходящей через центр масс тела ( ) плюс произведение массы тела на квадрат расстояния а между осями (рис. 3.6 ).

Рис. 3.6

Кинетическая энергия вращения

Рассмотрим вращение абсолютно твердого тела вокруг неподвижной оси ОО с угловой скоростью ω (рис. 3.7 ). Разобьем твердое тело на n элементарных масс ∆m i . Каждый элемент массы вращается по окружности радиуса r i с линейной скоростью (). Кинетическая энергия складывается из кинетических энергий отдельных элементов.

(3.21)

Рис. 3.7

Вспомним по (3.13), что – момент инерции относительно оси ОО.

Таким образом, кинетическая энергия вращающегося тела

Е к = (3.22)

Мы рассмотрели кинетическую энергию вращения вокруг неподвижной оси. Если тело участвует в двух движениях: в поступательном и вращательном движениях, то кинетическая энергия тела складывается из кинетической энергии поступательного движения и кинетической энергии вращения.

Например, шар массой m катится; центр масс шара движется поступательно со скоростью u (рис. 3.8 ).

Рис. 3.8

Полная кинетическая энергия шара будет равна

(3.23)

3.4. Момент импульса. Закон сохранения
момента импульса

Физическая величина равная произведению момента инерции I на угловую скорость ω , называется моментом импульса (моментом количества движения) L относительно оси вращения.

– момент импульса величина векторная и по направлению совпадает с направлением угловой скорости .

Продифференцировав уравнение (3.24) по времени, получим

где, М – суммарный момент внешних сил. В изолированной системе момент внешних сил отсутствует (М =0) и

Механика.

Вопрос №1

Система отсчёта. Инерциальные системы отсчёта. Принцип относительности Галилея - Эйнштейна.

Система отсчёта - это совокупность тел по отношению к которым описывается движение данного тела и связанная с ним система координат.

Инерциальная система отсчёта (ИСО) - это система, в которой свободно движущееся тело находится в состоянии покоя или равномерного прямолинейного движения.

Принцип относительности Галилея - Эйнштейна - Все явления природы в любой инерциальной системе отсчёта происходят одинаково и имеют одинаковый математический вид. Другими словами все ИСО равноправны.

Вопрос №2

Уравнение движения. Виды движения твёрдого тела. Основная задача кинематики.

Уравнения движения материальной точки:

- кинематическое уравнение движения

Виды движения твёрдого тела:

1) Поступательное движение - любая прямая проведённая в теле перемещается параллельно самой себе.

2) Вращательно движение - любая точка тела движется по окружности.

φ = φ(t)

Основная задача кинематики - это получение зависимостей от времени скорости V= V(t) и координат (или радиуса-вектора) r = r(t) материальной точки из известной зависимости от времени ее ускорения a = a(t) и известных начальных условий V 0 и r 0 .

Вопрос №7

И́мпульс (Количество движения ) - векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этой точки на её скорость v , направление импульса совпадает с направлением вектора скорости:

В теоретической механике обобщённым импульсом называется частная производная лагранжиана системы по обобщённой скорости

В случае, если лагранжиан системы не зависит от некоторой обобщённой координаты , то в силу уравнений Лагранжа .

Для свободной частицы функция Лагранжа имеет вид: , отсюда:

Независимость лагранжиана замкнутой системы от её положения в пространстве следует из свойства однородности пространства : для хорошо изолированной системы её поведение не зависит от того, в какое место пространства мы её поместим. По теореме Нётер из этой однородности следует сохранение некоторой физической величины. Эту величину и называют импульсом (обычным, не обобщённым).

В классической механике полным импульсом системы материальных точек называется векторная величина, равная сумме произведений масс материальных точек на их скорости:

соответственно величина называется импульсом одной материальной точки. Это векторная величина, направленная в ту же сторону, что и скорость частицы. Единицей измерения импульса в Международной системе единиц (СИ) является килограмм-метр в секунду (кг·м/с)

Если мы имеем дело с телом конечного размера, для определения его импульса необходимо разбить тело на малые части, которые можно считать материальными точками и просуммировать по ним, в результате получим:

Импульс системы, на которую не действуют никакие внешние силы (или они скомпенсированы), сохраняется во времени:

Сохранение импульса в этом случае следует из второго и третьего закона Ньютона: написав второй закон Ньютона для каждой из составляющих систему материальных точек и просуммировав по всем материальным точкам, составляющим систему, в силу третьего закона Ньютона получим равенство (*).

В релятивистской механике трёхмерным импульсом системы невзаимодействующих материальных точек называется величина

,

где m i - масса i -й материальной точки.

Для замкнутой системы не взаимодействующих материальных точек эта величина сохраняется. Однако трёхмерный импульс не есть релятивистски инвариантная величина, так как он зависит от системы отсчёта. Более осмысленной величиной будет четырёхмерный импульс, который для одной материальной точки определяется как

На практике часто применяются следующие соотношения между массой, импульсом и энергией частицы:

В принципе, для системы невзаимодействующих материальных точек их 4-импульсы суммируются. Однако для взаимодействующих частиц в релятивистской механике следует учитывать импульсы не только составляющих систему частиц, но и импульс поля взаимодействия между ними. Поэтому гораздо более осмысленной величиной в релятивистской механике является тензор энергии-импульса, который в полной мере удовлетворяет законам сохранения.

Вопрос №8

Момент инерции - скалярная физическая величина, мера инерции тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества

Осевой момент инерции

Осевые моменты инерции некоторых тел.

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина J a , равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

,

  • m i - масса i -й точки,
  • r i - расстояние от i -й точки до оси.

Осевой момент инерции тела J a является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

,

  • dm = ρdV - масса малого элемента объёма тела dV ,
  • ρ - плотность,
  • r - расстояние от элемента dV до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

Вывод формулы

dm и моментами инерции dJ i . Тогда

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобъём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJ i . Тогда

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

Теорема Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела J c относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

Если - момент инерции тела относительно оси, проходящей через центр масс тела, то момент инерции относительно параллельной оси, расположенной на расстоянии от неё, равен

,

где - полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

Энергия вращательного движения

Кинетическая энергия вращательного движения - энергия тела, связанная с его вращением.

Основные кинематические характеристики вращательного движения тела - его угловая скорость (ω) и угловое ускорение. Основные динамические характеристики вращательного движения - момент импульса относительно оси вращения z:

K z = I z ω

и кинетическая энергия

где I z - момент инерции тела относительно оси вращения.

Похожий пример можно найти при рассмотрении вращающейся молекулы с главными осями инерции I 1 , I 2 и I 3 . Вращательная энергия такой молекулы задана выражением

где ω 1 , ω 2 , и ω 3 - главные компоненты угловой скорости.

В общем случае, энергия при вращении с угловой скоростью находится по формуле:

, где I - тензор инерции.

Вопрос №9

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения ) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Наибольшую, пожалуй, роль момент импульса играет при описании собственно вращательного движения. Однако крайне важен и для гораздо более широкого класса задач (особенно - если в задаче есть центральная или осевая симметрия, но не только в этих случаях).

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) - векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой непПроизводная момента импульса по времени есть момент силы:

Таким образом, требование замкнутости системы может быть ослаблено до требования равенства нулю главного (суммарного) момента внешних сил:

где - момент одной из сил, приложенных к системе частиц. (Но конечно, если внешние силы вообще отсутствуют, это требование также выполняется).

Математически закон сохранения момента импульса следует из изотропии пространства, то есть из инвариантности пространства по отношению к повороту на произвольный угол. При повороте на произвольный бесконечно малый угол , радиус-вектор частицы с номером изменятся на , а скорости - . Функция Лагранжа системы при таком повороте не изменится, вследствие изотропии пространства. Поэтому



Вверх