Почему реакция деления ядра атома урана. Реакции деления ядер

Цепная ядерная реакция. В результате опытов по облучению нейтронами урану было найдено, что под действием нейтронов ядра урана делятся на два ядра (осколка) примерно половинной массы и заряда; этот процесс сопровождается испусканием нескольких (двух-трех) нейтронов (рис. 402). Помимо урана, способны делиться еще некоторые элементы из числа последних элементов периодической системы Менделеева. Эти элементы, так же как и уран, делятся не только под действием нейтронов, но также без внешних воздействий (спонтанно). Спонтанное деление было установлено на опыте советскими физиками К. А. Петржаком и Георгием Николаевичем Флеровым (р. 1913) в 1940г. Оно представляет собой весьма редкий процесс. Так, в 1г урана происходит всего лишь около 20 спонтанных делений в час.

Рис. 402. Деление ядра урана под действием нейтронов: а) ядро захватывает нейтрон; б) удар нейтрона о ядро приводит последнее в колебания; в) ядро делится на два осколка; при этом испускается еще несколько нейтронов

Благодаря взаимному электростатическому отталкиванию осколки деления разлетаются в противоположные стороны, приобретая огромную кинетическую энергию (около ). Реакция деления происходит, таким образом, со значительным выделением энергии. Быстродвижущиеся осколки интенсивно ионизуют атомы среды. Это свойство осколков используют для обнаружения процессов деления при помощи ионизационной камеры или камеры Вильсона. Фотография следов осколков деления в камере Вильсона приведена на рис. 403. Крайне существенным является то обстоятельство, что нейтроны, испущенные при делении уранового ядра (так называемые вторичные нейтроны деления), способны вызывать деление новых ядер урана. Благодаря этому можно осуществить цепную реакцию деления: однажды возникнув, реакция в принципе может продолжаться сама собой, охватывая все большее число ядер. Схема развития такой нарастающей целлон реакции изображена на рис. 404.

Рис. 403. Фотография следов осколков деления урана в камере Вильсона: осколки () разлетаются в противоположные стороны из тонкого слоя урана, нанесенного на пластинке, перегораживающей камеру. На снимке видно также множество более тонких следов, принадлежащих протонам, выбитым нейтронами из молекул водяного кара, содержащегося в камере

Осуществление цепной реакции деления на практике не просто; опыт показывает, что в массе природного урана цепная реакция не возникает. Причина этого кроется в потере вторичных нейтронов; в природном уране большая часть нейтронов выходит из игры, не вызывая делений. Как выявили исследования, потеря нейтронов происходит в наиболее распространенном изотопе урана - уране - 238 (). Этот изотоп легко поглощает нейтроны по реакции, подобно реакции серебра с нейтронами (см. § 222); при этом образуется искусственно-радиоактивный изотоп . Делится же с трудом и только под действием быстрых нейтронов.

Более удачными для цепной реакции свойствами обладает изотоп , который содержится в природном уране в количестве . Он делится под действием нейтронов любой энергии - быстрых и медленных и тем лучше, чем меньше энергия нейтронов. Конкурирующий с делением процесс - простое поглощение нейтронов - мало вероятен в в отличие от . Поэтому в чистом уране - 235 возможна цепная реакция деления при условии, однако, что масса урана-235 достаточно велика. В уране малой массы реакция деления обрывается из-за вылета вторичных нейтронов за пределы его вещества.

Рис. 404. Развитие ценной реакции деления: условно принято, что при делении ядра испускается два нейтрона и потерь нейтронов нет, т.е. каждый нейтрон вызывает новое деление; кружочки - осколки деления, стрелки - нейтроны деления

В самом деле, ввиду крошечных размеров атомных ядер нейтрон проходит в веществе значительный путь (измеряемый сантиметрами), прежде чем случайно натолкнется на ядро. Если размеры тела малы, то вероятность столкновения на пути до выхода наружу мала. Почти все вторичные нейтроны деления вылетают через поверхность тела, не вызывая новых делений, т. е. не продолжая реакции.

Из тела больших размеров вылетают наружу главным образом нейтроны, образовавшиеся в поверхностном слое. Нейтроны, образовавшиеся внутри тела, имеют перед собой достаточную толщу урана и в большинстве своем вызывают новые деления, продолжая реакцию (рис. 405). Чем больше масса урана, тем меньшую долю объема составляет поверхностный слой, из которого теряется много нейтронов, и тем благоприятнее условия для развития цепной реакции.

Рис. 405. Развитие цепной реакции деления в . а) В малой массе большинство нейтронов деления вылетает наружу. б) В большой массе урана многие нейтроны деления вызывают деления новых ядер; число делений возрастает от поколения к поколению. Кружочки - осколки деления, стрелки - нейтроны деления

Увеличивая постепенно количество , мы достигнем критической массы, т. е. наименьшей массы, начиная с которой возможна незатухающая цепная реакция деления в . При дальнейшем увеличении массы реакция начнет бурно развиваться (начало ей положат спонтанные деления). При уменьшении массы ниже критической реакция затухает.

Итак, можно осуществить цепную реакцию деления. Если располагать достаточным количеством чистого , отделенного от .

Как мы видели в §202, разделение изотопов представляет собой хотя сложную и дорогую, но все же выполнимую операцию. И действительно, извлечение из природного урана явилось одним из тех способов, при помощи которых цепная реакция деления была осуществлена на практике.

Наряду с этим цепная реакция была достигнута и другим способом, не требующим разделения изотопов урана. Этот способ несколько более сложен в принципе, но зато более прост в осуществлении. Он использует замедление быстрых вторичных нейтронов деления до скоростей теплового движения. Мы видели, что в природном уране незамедленные вторичные нейтроны поглощаются главным образом изотопом . Так как поглощение в не приводит к делению, то реакция обрывается. Как показывают измерения, при замедлении нейтронов до тепловых скоростей поглощающая способность возрастает сильнее поглощающей способности . Поглощение нейтронов изотопом , ведущее к делению, получает перевес. Поэтому, если замедлить нейтроны деления, не дав им поглотится в , цепная реакция станет возможной и с природным ураном.

Рис. 406. Система из природного урана и замедлителя, в которой может развиваться цепная реакция деления

На практике такого результата добиваются, помещая топкие стержни из природного урана в виде редкой решетки в замедлитель (рис. 406). В качестве замедлителей используют вещества, обладающие малой атомной массой и слабо поглощающие нейтроны. Хорошими замедлителями являются графит, тяжелая вода, бериллий.

Пусть в одном из стержней произошло деление ядра урана. Так как стержень сравнительно тонкий, то быстрые вторичные нейтроны вылетят почти все в замедлитель. Стержни расположены в решетке довольно редко. Вылетевший нейтрон до попадания в новый стержень испытывает много соударений с ядрами замедлителя и замедляется до скорости теплового движения (рис. 407). Попав затем в урановый стержень, нейтрон поглотится скорее всего в и вызовет новое деление, продолжая тем самым реакцию. Цепная реакция деления была впервые осуществлена в США в 1942г. группой ученых под руководством итальянского физика Энрико Ферми (1901-1954) в системе с природным ураном. Независимо этот процесс был реализован в СССР в 1946г. академиком Игорем Васильевичем Курчатовым (1903-1960) с сотрудниками.

Рис. 407. Развитие ценной реакции деления в системе из природного урана и замедлителя. Быстрый нейтрон, вылетев из тонкого стержня, попадет в замедлитель и замедляется. Попав снова в уран, замедленный нейтрон скорее всего поглощается в , вызывая деление (обозначение: два белых кружка). Некоторые нейтроны поглощаются в , не вызывая деления (обозначение: черный кружок)

Цель: сформировать у учащихся представление о делении ядер урана.

  • проверить ранее изученный материал;
  • рассмотреть механизм деления ядра урана;
  • рассмотреть условие возникновения цепной реакции;
  • выяснить факторы, влияющие на протекание цепной реакции;
  • развивать речь и мышление учащихся;
  • развивать умение анализировать, контролировать и корректировать собственную деятельность в рамках заданного времени.

Оборудование: компьютер, проекционная система, дидактический материал (тест “Состав ядра”), диски “Интерактивный курс. Физика 7-11кл” (Физикон) и “1С-репититор. Физика” (1С).

Ход занятия

I. Организационный момент (2’).

Приветствие, объявление плана занятия.

II. Повторение ранее изученного материала (8’).

Самостоятельная работа учащихся – выполнение теста (приложение 1 ). В тесте необходимо указать один верный ответ.

III. Изучение нового материала (25’). По ходу урока составляем конспект (приложение 2 ).

Мы с вами недавно узнали, что некоторых химические элементы при радиоактивном распаде превращаются в другие химические элементы. А как вы думаете, что будет, если в ядро атома некоторого химического элемента направить какую-нибудь частицу, ну, например, нейтрон в ядро урана? (выслушиваю предположения учащихся)

А давайте проверим ваши предположения (работа с интерактивной моделью “Деление ядра” “Интерактивный курс. Физика 7-11кл”).

Что в результате получилось?

– При попадании нейтрона в ядро урана, мы видим, что в результате образуется 2 осколка и 2-3 нейтрона.

Тот же эффект был получен в 1939г немецкими учеными Отто Ганом и Фрицем Штрассманом. Они обнаружили, что в результате взаимодействия нейтронов с ядрами урана появляются радиоактивные ядра-осколки, массы и заряды которых примерно вдвое меньше соответствующих характеристик ядер урана. Происходящее подобным образом деление ядер называют вынужденным делением, в отличие от спонтанного, которое происходит при естественных радиоактивных превращениях.

Ядро приходит в состояние возбуждения и начинает деформироваться. Почему ядро разрывается на 2 части? Под действием каких сил происходит разрыв?

Какие силы действуют внутри ядра?

– Электростатические и ядерные.

Хорошо, а как проявляются электростатические силы?

– Электростатические силы действуют между заряженными частицами. В ядре заряженной частицей является протон. Так как протон заряжен положительно значит, между ними действуют силы отталкивания.

Верно, а как проявляются ядерные силы?

– Ядерные силы – силы притяжения между всеми нуклонами.

Так, под действием каких сил происходит разрыв ядра?

– (Если возникнут затруднения, задаю наводящие вопросы и подвожу учащихся к правильному выводу) Под действием электростатических сил отталкивания ядро разрывается на две части, которые разлетаются в разные стороны и излучают при этом 2-3 нейтрона.

Осколки разлетаются с очень большой скоростью. Получается, что часть внутренней энергии ядра переходит в кинетическую энергию разлетающихся осколков и частиц. Осколки попадают в окружающую среду. Как вы думаете, что происходит с ними?

– Осколки тормозятся в окружающей среде.

Чтобы не нарушать закон сохранения энергии, мы должны сказать, что произойдет с кинетической энергией?

Кинетическая энергия осколков преобразуется во внутреннюю энергию среды.

Можно ли заметить, что внутренняя энергия среды изменилась?

– Да, среда нагревается.

А будет ли влиять на изменение внутренней энергии тот фактор, что в делении будет участвовать разное количество ядер урана?

– Конечно, при одновременном делении большого количества ядер урана внутренняя энергия окружающей уран среды возрастает.

Из курса химии, вы знаете, что реакции могут происходит как с поглощением энергии, так и выделением. Что мы скажем о протекании реакции деления ядер урана?

– Реакция деления ядер урана идет с выделением энергии в окружающую среду.

Энергия, заключенная в ядрах атомов, колоссальна. Например, при полном делении всех ядер, имеющихся в 1г урана, выделилось бы столько же энергии, сколько выделяется при сгорании 2,5т нефти. Выяснили, что произойдет с осколками, а как поведут себя нейтроны?

(выслушиваю предположения учащихся, проверяем предположения, работая с интерактивной моделью “Цепная реакция” “1С-репититор. Физика”).

Верно, нейтроны на своем пути могут встретить ядра урана и вызвать деление. Такая реакция называется цепной.

Итак, каково условие возникновения цепной реакции?

– Цепная реакция возможна благодаря тому, что при делении каждого ядра образуется 2-3 нейтрона, которые могут принять участие в делении других ядер.

Мы видим, что общее число свободных нейтронов в куске урана лавинообразно увеличивается со временем. К чему это может привести?

– К взрыву.

– Возрастает число делений ядер и, соответственно энергия, выделяющаяся в единицу времени.

Но ведь, возможен и другой вариант, при котором число свободных нейтронов уменьшается со временем, не встретил нейтрон на своем пути ядро. В этом случае что произойдет с цепной реакцией?

– Прекратится.

Можно ли использовать в мирных целях энергию подобных реакций?

А как должна протекать реакция?

– Реакция должна протекать так, чтобы число нейтронов со временем оставалось постоянным.

Как же добиться того, чтобы число нейтронов все время оставалось постоянным?

– (предложения ребят)

Для решения этой проблемы нужно знать, какие факторы влияют на увеличение и на уменьшение общего числа свободны нейтронов в куске урана, в котором протекает цепная реакция.

Одним из таких факторов является масса урана . Дело в том, что не каждый нейтрон, излученный при делении ядра, вызывает деление других ядер. Если масса (и соответственно размеры) куска урана слишком мала, то многие нейтроны вылетят за его пределы, не успев встретить на своем пути ядро, вызвать его деление и породить таким образом новое поколение нейтронов, необходимых для продолжения реакции. В этом случае цепная реакция прекратится. Чтобы реакция не прекращалась, нужно увеличить массу урана до определенного значения, называемого критическим .

Почему при увеличении массы цепная реакция становится возможной?

– Чем больше масса куска, тем больше вероятность встречи нейтронов с ядрами. Соответственно увеличивается число делений ядер и число излучаемых нейтронов.

При некоторой так называемой критической массе урана число нейтронов, появившихся при делении ядер, становится равным числу потерянных нейтронов (т. е. захваченных ядрами без деления и вылетевших за пределы куска).

Поэтому их общее число остается неизменным. При этом цепная реакция может идти длительное время, не прекращаясь и не приобретая взрывного характера.

Наименьшая масса урана, при которой возможно протекание цепной реакции, называется критической массой.

Как будет протекать реакция если масса урана больше критической?

– В результате резкого увеличения числа свободных нейтронов цепная реакция приводит к взрыву.

А если меньше критической?

– Реакция не протекает из-за недостатка свободных нейтронов.

Уменьшить потерю нейтронов (которые вылетают из урана, не прореагировав с ядрами) можно не только за счет увеличения массы урана, но и с помощью специальной отражающей оболочки . Для этого кусок урана помещают в оболочку, сделанную из вещества, хорошо отражающего нейтроны (например, из бериллия). Отражаясь от этой оболочки, нейтроны возвращаются в уран и могут принять участие в делении ядер.

Помимо массы и наличия отражающей оболочки существует еще несколько факторов, от которых зависит возможность протекания цепной реакции. Например, если кусок урана содержит слишком много примесей других химических элементов, то они поглощают большую часть нейтронов и реакция прекращается.

Еще одними фактором, влияющим на ход реакции, является наличие в уране так называемого замедлителя нейтронов . Дело в том, что ядра урана-235 с наибольшей вероятностью делятся под действием медленных нейтронов. А при делении ядер образуются быстрые нейтроны. Если быстрые нейтроны замедлить, то большая их часть захватится ядрами урана-235 с последующим делением этих ядер, в качестве замедлителей используются такие вещества, как графит, пода, тяжелая вода и некоторые другие. Эти вещества только замедляют нейтроны, почти не поглощая их.

Итак, какие основные факторы способны влиять на протекание цепной реакции?

– Возможность протекания цепной реакции определяется массой урана, количеством примесей в нем, наличием оболочки и замедлителя.

Критическая масса шарообразного куска урана-235 приблизительно равна 50кг. При этом его радиус составляет всего 9см, поскольку уран имеет очень большую плотность.

Применяя замедлитель и отражающую оболочку, и уменьшая количество примесей, удается снизить критическую массу урана до 0,8 кг.

Энергия E, высвобождающаяся при делении, растет с увеличением Z 2 /A. Величина Z 2 /A = 17 для 89 Y (иттрия). Т.е. деление энергетически выгодно для всех ядер тяжелее иттрия. Почему же большинство ядер устойчиво по отношению к самопроизвольному делению? Чтобы ответить на этот вопрос, необходимо рассмотреть механизм деления.

В процессе деления происходит изменение формы ядра. Ядро последовательно проходит через следующие стадии (рис. 7.1): шар, эллипсоид, гантель, два грушевидных осколка, два сферических осколка. Как при этом изменяется потенциальная энергия ядра на различных стадиях деления?
Первоначальное ядро с увеличением r принимает форму все более вытянутого эллипсоида вращения. В этом случае вследствие эволюции формы ядра изменение его потенциальной энергии определяется изменением суммы поверхностной и кулоновской энергий E п + E к. Поверхностная энергия при этом возрастает, так как увеличивается площадь поверхности ядра. Кулоновская энергия уменьшается, так как увеличивается среднее расстояние между протонами. Если при незначительной деформации, характеризующейся малым параметром , исходное ядро приняло форму аксиально симметричного эллипсоида, поверхностная энергия E" п и кулоновская энергия E" к как функции параметра деформации изменяются следующим образом:

В соотношениях (7.4–7.5) E п и E к – поверхностная и кулоновская энергии исходного сферически симметричного ядра.
В области тяжелых ядер 2E п > E к и сумма поверхностной и кулоновской энергий растет с увеличением . Из (7.4) и (7.5) следует, что при малых деформациях рост поверхностной энергии препятствует дальнейшему изменению формы ядра, а следовательно, и делению.
Соотношение (7.5) справедливо для малых деформаций . Если деформация настолько велика, что ядро принимает форму гантели, то поверхностные и кулоновские силы, стремятся разделить ядро и придать осколкам сферическую форму. Таким образом, при постепенном увеличении деформации ядра его потенциальная энергия проходит через максимум. График изменения поверхностной и кулоновской энергий ядра в зависимости от r показан на рис. 7.2.

Наличие потенциального барьера препятствует мгновенному самопроизвольному делению ядер. Для того чтобы ядро разделилось, ему необходимо сообщить энергию Q, превышающую высоту барьера деления H. Максимум потенциальной энергии делящегося ядра E + H (например золота) на два одинаковых осколка ≈ 173 МэВ, а величина энергии E, освобождающейся при делении, равна 132 МэВ. Таким образом, при делении ядра золота необходимо преодолеть потенциальный барьер высотой около 40 МэВ.
Высота барьера деления H тем больше, чем меньше отношение кулоновской и поверхностной энергии Е к /Е п в начальном ядре. Это отношение, в свою очередь, увеличивается с увеличением параметра деления Z 2 /А (7.3). Чем тяжелее ядро, тем меньше высота барьера деления H, так как параметр деления в предположении, что Z пропорционально A, увеличивается с ростом массового числа:

Е к /Е п = (a 3 Z 2)/(a 2 A) ~ A. (7.6)

Поэтому более тяжелым ядрам, как правило, нужно сообщить меньшую энергию, чтобы вызвать деление ядра.
Высота барьера деления обращается в нуль при 2E п – E к = 0 (7.5). В этом случае

2E п /E к = 2(a 2 A)/(a 3 Z 2),

Z 2 /A = 2a 2 /(a 3 Z 2) ≈ 49.

Таким образом, согласно капельной модели в природе не могут существовать ядра с Z 2 /A > 49, так как они должны практически мгновенно за характерное ядерное время порядка 10 –22 с самопроизвольно разде­литься на два осколка. Зависимости формы и высоты потенциального барьера H, а также энергии деления от величины параметра Z 2 /A показаны на рис. 7.3.

Рис. 7.3. Радиальная зависимость формы и высоты потенциального барьера и энергии деления E при различных величинах параметра Z 2 /A. На вертикальной оси отложена величина E п + E к.

Самопроизвольное деление ядер с Z 2 /A < 49, для которых высота барьера H не равна нулю, с точки зрения классической физики невозможно. Однако в квантовой механике такое деление возможно за счет туннельного эффекта – прохождения осколков деления через потенциальный барьер. Оно носит название спонтанного деления. Вероятность спонтанного деления растет с увеличением параметра деления Z 2 /A, т. е. с уменьшением высоты барьера деления. В целом период спонтанного деления уменьшается при переходе от менее тяжелых ядер к более тяжелым от T 1/2 > 10 21 лет для 232 Th до 0,3 с для 260 Rf.
Вынужденное деление ядер с Z 2 /A < 49 может быть вызвано их возбуждением фотонами, нейтронами, протонами, дейтронами, a частицами и другими частицами, если вносимая в ядро энергия достаточна для преодоления барьера деления.
Минимальное значение энергии возбуждения составного ядра E*, образующегося при захвате нейтрона равно энергии связи нейтрона в этом ядре ε n . В таблице 7.1 сравниваются высота барьера H и энергия связи нейтрона ε n для изотопов Th, U, Pu, образующихся после захвата нейтрона. Энергия связи нейтрона зависит от числа нейтронов в ядре. За счёт энергии спаривания энергия связи четного нейтрона больше энергии связи нечетного нейтрона.

Таблица 7.1

Высота барьера деления H, энергия связи нейтрона ε n

Изотоп Высота барьера деления H, МэВ Изотоп Энергия связи нейтрона ε n
232 Th 5.9 233 Th 4.79
233 U 5.5 234 U 6.84
235 U 5.75 236 U 6.55
238 U 5.85 239 U 4.80
239 Pu 5.5 240 Pu 6.53

Характерной особенностью деления является то, что осколки, как правило, имеют различные массы. В случае наиболее вероятного деления 235 U отношение масс осколков в среднем равно ~ 1.5. Распределение по массам осколков деления 235 U тепловыми нейтронами показано на рис. 7.4. Для наиболее вероятного деления тяжелый осколок имеет массовое число 139, легкий – 95. Среди продуктов деления имеются осколки с A = 72 – 161 и Z = 30 – 65. Вероятность деления на два равных по массе осколка не равна нулю. При делении 235 U тепловыми нейтронами вероятность симметричного деления примерно на три порядка меньше, чем в случае наиболее вероятного деления на осколки с A = 139 и 95.
Асимметричное деление объясняется оболочечной структурой ядра. Ядро стремится разделиться таким образом, чтобы основная часть нуклонов каждого осколка образовала наиболее устойчивый магический остов.
Отношение числа нейтронов к числу протонов в ядре 235 U N/Z = 1.55, в то время как у стабильных изотопов, имеющих массовое число, близкое к массовому числу осколков, это отношение 1.25 − 1.45. Следовательно, осколки деления оказываются сильно перегружеными нейтронами и должны быть
β - радиоактивны. Поэтому, осколки деления испытывают последовательные β - -распады, причем заряд первичного осколка может изменяться на 4 − 6 единиц. Ниже приведена характерная цепочка радиоактивных распадов 97 Kr – одного из осколков, образующегося при делении 235 U:

Возбуждение осколков, вызванное нарушением соотношения числа протонов и нейтронов, характерного для стабильных ядер, снимается также за счет вылета мгновенных нейтронов деления. Эти нейтроны испускаются движущимися осколками за время, меньшее, чем ~ 10 -14 с. В среднем в каждом акте деления испускается 2 − 3 мгновенных нейтрона. Их энергетический спектр непрерывный с максимумом около 1 МэВ. Средняя энергия мгновенного нейтрона близка к 2 МэВ. Испускание более чем одного нейтрона, в каждом акте деления делает возможным получение энергии за счет цепной ядерной реакции деления.
При наиболее вероятном делении 235 U тепловыми нейтронами лёгкий осколок (A = 95) приобретает кинетическую энергию ≈ 100 МэВ, а тяжёлый (A = 139) – около 67 МэВ. Таким образом, суммарная кинетическая энергия осколков ≈ 167 МэВ. Полная энергия деления в данном случае составляет 200 МэВ. Таким образом, оставшаяся энергия (33 МэВ) распределяется между другими продуктами деления (нейтроны, электроны и антинейтрино β - -распада осколков, γ-излучение осколков и продуктов их распада). Распределение энергии деления между различными продуктами при делении 235 U тепловыми нейтронами дано в таблице 7.2.

Таблица 7.2

Распределение энергии деления 235 U тепловыми нейтронами

Продукты ядерного деления (ПЯД) представляют собой сложную смесь более чем 200 радиоактивных изотопов 36 элементов (от цинка до гадолиния). Большую часть ак­тивности составляют короткоживущие радионуклиды. Так, через 7, через 49 и через 343 суток после взрыва активность ПЯД снижается соответственно в 10, 100 и 1000 раз по сравнению с активностью через час после взрыва. Выход наиболее биологически зна­чимых радионуклидов приведен в таблице 7.3. Кроме ПЯД радиоактивное загрязнение обусловлено радионуклидами наведенной активности (3 H, 14 C, 28 Al, 24 Nа, 56 Mn, 59 Fe , 60 Cо и др.) и неразделившейся частью урана и плутония. Особенно велика роль наведен­ной активности при термоядерных взрывах.

Таблица 7.3

Выход некоторых продуктов деления при ядерном взрыве

Радио­нуклид Период полураспада Выход на одно деление, % Активность на 1 Мт,
10 15 Бк
89 Sr 50.5 сут. 2.56 590
90 Sr 29.12 лет 3.5 3.9
95 Zr 65 сут. 5.07 920
103 Ru 41 сут. 5.2 1500
106 Ru 365 сут. 2.44 78
131 I 8.05 сут. 2.9 4200
136 Cs 13.2 сут. 0.036 32
137 Cs 30 лет 5.57 5.9
140 Ba 12.8 сут. 5.18 4700
141 Cs 32.5 сут. 4.58 1600
144 Cs 288 сут. 4.69 190
3 H 12.3 лет 0.01 2.6·10 -2

При ядерных взрывах в атмосфере значительная часть осадков (при наземных взрывах до 50%) выпадает вблизи района испытаний. Часть радиоактивных веществ задерживается в нижней части атмосферы и под действием ветра перемещается на большие расстояния, оставаясь примерно на одной и той же широте. Находясь в воздухе примерно месяц, радиоактивные вещества во время этого перемещения постепенно выпадают на Землю. Большая часть радионуклидов выбрасывается в стратосферу (на высоту 10÷15 км), где происходит их глобальное рассеивание и в значительной степени распад.
Высокую активность в течение десятков лет имеют различные элементы конструкции ядерных реакторов (таблица 7.4)

Таблица 7.4

Значения удельной активности (Бк/т урана) основных продуктов деления в тепловыделяющих элементах, извлеченных из реактора после трехлетней эксплуатации

Радионуклид 0 1 сут. 120 сут. 1 год 10 лет
85 Kr 5. 78· 10 14 5. 78· 10 14 5. 66· 10 14 5. 42· 10 14

4. 7· 10 14

3. 03· 10 14
89 Sr 4. 04· 10 16 3. 98· 10 16 5. 78· 10 15 2. 7· 10 14

1. 2· 10 10

90 Sr 3. 51· 10 15 3. 51· 10 15 3. 48· 10 15 3. 43· 10 15

3. 26· 10 15

2. 75· 10 15
95 Zr 7. 29· 10 16 7. 21· 10 16 1. 99· 10 16 1. 4· 10 15 5. 14· 10 11
95 Nb 7. 23· 10 16 7. 23· 10 16 3. 57· 10 16 3. 03· 10 15 1. 14· 10 12
103 Ru 7. 08· 10 16 6. 95· 10 16 8. 55· 10 15 1. 14· 10 14 2. 97· 10 8
106 Ru 2. 37· 10 16 2. 37· 10 16 1. 89· 10 16 1. 19· 10 16 3. 02· 10 15 2. 46· 10 13
131 I 4. 49· 10 16 4. 19· 10 16 1. 5· 10 12 1. 01· 10 3
134 Cs 7. 50· 10 15 7. 50· 10 15 6. 71· 10 15 5. 36· 10 15 2. 73· 10 15 2. 6· 10 14
137 Cs 4. 69· 10 15 4. 69· 10 15 4. 65· 10 15 4. 58· 10 15 4. 38· 10 15 3. 73· 10 15
140 Ba 7. 93· 10 16 7. 51· 10 16 1. 19· 10 14 2. 03· 10 8
140 La 8. 19· 10 16 8. 05· 10 16 1. 37· 10 14 2. 34· 10 8
141 Ce 7. 36· 10 16 7. 25· 10 16 5. 73· 10 15 3. 08· 10 13 5. 33· 10 6
144 Ce 5. 44· 10 16 5. 44· 10 16 4. 06· 10 16 2. 24· 10 16 3. 77· 10 15 7. 43· 10 12
143 Pm 6. 77· 10 16 6. 70· 10 16 1. 65· 10 14 6. 11· 10 8
147 Pm 7. 05·10 15 7. 05· 10 15 6. 78· 10 15 5. 68· 10 15

3. 35· 10 14

Урок по физике в 9 классе

«Деление ядер урана. Цепная реакция»

Цель урока: ознакомить учащихся с процессом деления атомных ядер урана, механизмом протекания цепной реакции.

Задачи:

образовательные:

изучить механизм деления ядер урана-235; ввести понятие критической массы; определить факторы, определяющие протекание цепной реакции.

воспитательные:

подвести учащихся к пониманию значимости научных открытий и той опасности, которая может исходить от научных достижений при бездумном, неграмотном или безнравственном отношении с ними.

развивающие:

развитие логического мышления; развитие монологической и диалогической речи; развитие у учащихся мыслительных операций: анализа, сравнения, обучения. Формирование представления о целостности картины мира

Тип урока: урок усвоения новых знаний.

Компетенции, на формирование которых направлен урок:

    ценностно-смысловые - способность видеть и понимать окружающий мир,

    общекультурные - освоение учеником научной картины мира,

    учебно-познавательные - умение отличать факты от домыслов,

    Коммуникативные - навыки работы в группе, владение различными социальными ролями в коллективе,

    компетенции личностного самосовершенствования- культуры мышления и поведения

Ход урока: 1. Организационный момент.

Настал новый урок. Я улыбнусь вам, а вы улыбнетесь друг другу. И подумаете: как хорошо, что мы сегодня здесь все вместе. Мы скромны и добры, приветливы и ласковы. Мы все здоровы. - Глубоко вдохните и выдохните. Выдохните вчерашнюю обиду, злобу и беспокойство. Я желаю всем нам хорошего урока .

2. Проверка домашнего задания.

Тест.

1. Какой заряд имеет ядро?

1) положительный 2) отрицательный 3) ядро заряда не имеет

2. Что представляет собой альфа – частица?

1) электрон 2) ядро атом гелия

3) электромагнитное излучение

3. Сколько протонов и нейтронов содержит ядро атома бериллияBe

1) Z =9, N =4 2) Z =5, N =4 3) Z =4, N =5

4. Ядро какого химического элемента образуется при α – распаде радия?

Ra → ? + He .

1) радона 2) урана 3) фермий

5. Масса ядра всегда … суммы масс нуклонов, из которых оно состоит.

1) больше 2) равна 3) меньше

6. Нейтрон – это частица,

1) имеющая заряд +1, атомную массу 1;

2) имеющая заряд – 1, атомную массу 0;

3) имеющая заряд 0, атомную массу 1.

7.Укажите второй продукт ядерной реакции

Ответы: Вариант 1. 1)1; 2)2; 3)3; 4)1; 5)3; 6)3; 7)3.

8. Как электрически взаимодействуют друг с другом протоны в ядре?

9. Что такое дефект масс? Записать формулу.

10. Что такое энергия связи? Записать формулу.

    Изучение нового материала.

Мы с вами недавно узнали, что некоторых химические элементы при радиоактивном распаде превращаются в другие химические элементы. А как вы думаете, что будет, если в ядро атома некоторого химического элемента направить какую-нибудь частицу, ну, например, нейтрон в ядро урана?

В 1939 году немецкими учеными Отто Ганом и Фрицем Штрассманом было открыто деление ядер урана. Они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (Z = 56), криптона (Z = 36) и др.

Рассмотрим более подробно процесс деления ядра урана при бомбардировке нейтроном по рисунку. Нейтрон, попадая в ядро урана, поглощается им. Ядро возбуждается и начинает деформироваться подобно жидкой капле.

Ядро приходит в состояние возбуждения и начинает деформироваться. Почему ядро разрывается на 2 части? Под действием каких сил происходит разрыв?

Какие силы действуют внутри ядра?

– Электростатические и ядерные.

Хорошо, а как проявляются электростатические силы?

– Электростатические силы действуют между заряженными частицами. В ядре заряженной частицей является протон. Так как протон заряжен положительно, значит, между ними действуют силы отталкивания.

Верно, а как проявляются ядерные силы?

– Ядерные силы – силы притяжения между всеми нуклонами.

Так, под действием каких сил происходит разрыв ядра?

(Если возникнут затруднения, задаю наводящие вопросы и подвожу учащихся к правильному выводу) Под действием электростатических сил отталкивания ядро разрывается на две части, которые разлетаются в разные стороны и излучают при этом 2-3 нейтрона.

Оно растягивается до тех пор, пока электрические силы отталкивания не начнут преобладать над ядерными. Ядро разрывается на два осколка, выбрасывая при этом два или три нейтрона. Такова технология деления ядра урана.

Осколки разлетаются с очень большой скоростью. Получается, что часть внутренней энергии ядра переходит в кинетическую энергию разлетающихся осколков и частиц. Осколки попадают в окружающую среду. Как вы думаете, что происходит с ними?

– Осколки тормозятся в окружающей среде.

Чтобы не нарушать закон сохранения энергии, мы должны сказать, что произойдет с кинетической энергией?

– Кинетическая энергия осколков преобразуется во внутреннюю энергию среды.

Можно ли заметить, что внутренняя энергия среды изменилась?

– Да, среда нагревается.

А будет ли влиять на изменение внутренней энергии тот фактор, что в делении будет участвовать разное количество ядер урана?

– Конечно, при одновременном делении большого количества ядер урана внутренняя энергия окружающей уран среды возрастает.

Из курса химии, вы знаете, что реакции могут происходит как с поглощением энергии, так и выделением. Что мы скажем о протекании реакции деления ядер урана?

– Реакция деления ядер урана идет с выделением энергии в окружающую среду.

(Слайд 13)

Уран встречается в природе в виде двух изотопов: U (99,3 %) и U (0,7 %). При этом реакция деления U наиболее интенсивно идет на медленных нейтронах, в то время как ядра U просто поглощают нейтрон, и деление не происходит. Поэтому основной интерес представляет реакция деления ядра U. В настоящее время известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, возникающих при делении этого ядра. Две типичные реакции деления этого ядра имеют вид:

Обратим внимание, что энергия, выделяющаяся при делении ядер урана огромна. Например, при полном делении всех ядер, содержащихся в 1 кг урана, выделяется такая же энергия, как и при сгорании 3000 т угля. При том эта энергия может выделиться мгновенно.

(Слайд 14)

Выяснили, что произойдет с осколками, а как поведут себя нейтроны?

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией . (Запись в тетрадь: Цепна́я я́дерная реа́кция - последовательность ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности). Схема развития цепной реакции деления ядер урана рассмотрим более подробно по видеофрагменте в замедленном темпе для более детального рассмотрения

Мы видим, что общее число свободных нейтронов в куске урана лавинообразно увеличивается со временем. К чему это может привести?

– К взрыву.

Почему?

– Возрастает число делений ядер и, соответственно энергия, выделяющаяся в единицу времени.

Но ведь, возможен и другой вариант, при котором число свободных нейтронов уменьшается со временем, не встретил нейтрон на своем пути ядро. В этом случае что произойдет с цепной реакцией?

– Прекратится.

Можно ли использовать в мирных целях энергию подобных реакций?

А как должна протекать реакция?

– Реакция должна протекать так, чтобы число нейтронов со временем оставалось постоянным.

Как же добиться того, чтобы число нейтронов все время оставалось постоянным?

(предложения ребят)

Для решения этой проблемы нужно знать, какие факторы влияют на увеличение и на уменьшение общего числа свободны нейтронов в куске урана, в котором протекает цепная реакция.

(Слайд 15)

Одним из таких факторов является масса урана . Дело в том, что не каждый нейтрон, излученный при делении ядра, вызывает деление других ядер. Если масса (и соответственно размеры) куска урана слишком мала, то многие нейтроны вылетят за его пределы, не успев встретить на своем пути ядро, вызвать его деление и породить, таким образом, новое поколение нейтронов, необходимых для продолжения реакции. В этом случае цепная реакция прекратится. Чтобы реакция не прекращалась, нужно увеличить массу урана до определенного значения, называемого критическим .

Почему при увеличении массы цепная реакция становится возможной?

Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %. Такая концентрация оказывается недостаточной для начала цепной реакции. ИзотопU также может поглощать нейтроны, но при этом не возникает цепной реакции.

(Запись в тетрадь: Коэффициент размножения нейтронов k - отношение числа нейтронов последующего поколения к числу в предшествующем поколении во всём объеме размножающей нейтроны среды)

Цепная реакция в уране с повышенным содержанием урана-235 может развиваться только тогда, когда масса урана превосходит так называемую критическую массу. В небольших кусках урана большинство нейтронов, не попав ни в одно ядро, вылетают наружу. Для чистого урана-235 критическая масса составляет около 50 кг.

(Запись в тетрадь: Критическая масса - минимальное количество делящегося вещества, необходимое для начала самоподдерживающейся цепной реакции деления).

(Слайд 16)

Критическую массу урана можно во много раз уменьшить, если использовать так называемые замедлители нейтронов. Дело в том, что нейтроны, рождающиеся при распаде ядер урана, имеют слишком большие скорости, а вероятность захвата медленных нейтронов ядрами урана-235 в сотни раз больше, чем быстрых. Наилучшим замедлителем нейтронов является тяжелая вода H 2 O. Обычная вода при взаимодействии с нейтронами сама превращается в тяжелую воду.

Хорошим замедлителем является также графит, ядра которого не поглощают нейтронов. При упругом взаимодействии с ядрами дейтерия или углерода нейтроны замедляются свое движение.

Применение замедлителей нейтронов и специальной оболочки из бериллия, которая отражает нейтроны, позволяет снизить критическую массу до 250 г (0,25 кг).

Запись в тетрадь:

Критическую массу можно уменьшить, если:

    Использовать замедлители (графит, обычная и тяжелая вода)

    Отражающая оболочка (бериллий)).

А в атомных бомбах, как раз, цепная неуправляемая ядерная реакция возникает при быстром соединении двух кусков урана-235, каждый из которых имеет массу несколько ниже критической.

Атомная бомба – это страшное оружие. Поражающими факторами которой являются: 1) Световое излучение (включая сюда ренгеновское и тепловое излучение); 2) Ударная волна; 3)радиационное заражение местности. Но деление ядер урана используют и в мирных целях – это в атомных реакторах на АЭС. Процессы, происходящие в этих случаях мы рассмотрим на следующем уроке.

Середина 20 века определяется акселерацией науки: фантастическим ускорением, внедрением научных достижений в производство и в нашу жизнь. Всё это заставляет нас задуматься – что же даст нам наука завтра?
Облегчить все тяготы существования человека – вот основная цель подлинно прогрессивной науки. Сделать человечество более счастливым – ни одного, не двух, а именно человечества. И это очень важно, потому что, как известно, наука может выступить и против человека. Атомный взрыв в японских городах – Хиросима и Нагасаки трагический тому пример.

Итак, 1945 год, август. Вторая мировая война идет к своему завершению.

(Слайд 2 )

6 августа в 1:45 американский бомбардировщик B-29 под командованием полковника Пола Тиббетса, взлетел с острова , находившегося примерно в 6 часах лета от Хиросимы.

(Слайд 3)

Хиросима после атомного взрыва.

Чья там бродит тень незримо,
От беды ослепла?
Это плачет Хиросима
В облаках из пепла.
Чей там голос в жарком мраке
Слышен иступлённый?
Это плачет Нагасаки
На земле сожженной
В этом плаче и рыданье
Никакой нет фальши,
Мир весь замер в ожиданье –
Кто заплачет дальше?

(Слайд 4)

Количество погибших от непосредственного воздействия взрыва составило от 70 до 80 тысяч человек. К концу 1945 года, в связи с действием радиоактивного заражения и других пост-эффектов взрыва, общее количество погибших составило от 90 до 166 тысяч человек. По истечении 5 лет, общее количество погибших достигло 200 000 человек.

(Слайд 5)

6 августа, после получения известия об успешном проведении атомной бомбардировки Хиросимы, Президент США Трумэн заявил, что

«Мы сейчас готовы уничтожить, ещё быстрее и полнее чем раньше, все наземные производственные мощности японцев в любом городе. Мы уничтожим их доки, их фабрики, и их коммуникации. Пусть не будет никакого недопонимания - мы полностью уничтожим способность Японии вести войну»

(Слайд 6)

В 2:47 9 августа американский бомбардировщик B-29 под командованием майора , нёсший на борту атомную бомбу, взлетел с острова . В 10:56 В-29 прибыл к Нагасаки. Взрыв произошёл в 11:02 местного времени.

(Слайд 7)

Количество погибших к концу 1945 года составило от 60 до 80 тысяч человек. По истечении 5 лет, общее количество погибших, с учётом умерших от рака и других долгосрочных воздействий взрыва, могло достичь или даже превысить 140 000 человек.

Такова история, печальная и предостерегающая

Каждый человек – не есть остров,

каждый человек – это часть большого континента.
И никогда не спрашивай, по ком звонит колокол.
Он звонит по тебе...

    Закрепление.

    С чем мы познакомились сегодня на уроке? (с механизмом деления ядер урана, с цепной реакцией)

    Каковы условия протекания цепной реакции?

    Что такое критическая масса?

    Что такое коэффициент размножения?

    Что служит замедлителем нейтронов?

    Рефлексия.

С каким настроением вы уходите с урока?

    Оценивание.

    Домашнее задание: п. 74,75 , вопросы стр.252-253

В 1934 г. Э. Ферми решил получить трансурановые элементы, облучая 238 U нейтронами. Идея Э. Ферми заключалась в том, что в результате β - -распада изотопа 239 U образуется химический элемент с порядковым номером Z = 93. Однако идентифицировать образование 93-его элемента не удавалось. Вместо этого в результате радиохимического анализа радиоактивных элементов, выполненного О.Ганом и Ф.Штрассманом, было показано, что одним из продуктов облучения урана нейтронами является барий (Z = 56) – химический элемент среднего атомного веса, в то время как согласно предположению теории Ферми должны были получаться трансурановые элементы.
Л. Мейтнер и О. Фриш высказали предположение, что в результате захвата нейтрона ядром урана происходит развал составного ядра на две части

92 U + n → 56 Ba + 36 Kr + xn.

Процесс деления урана сопровождается появлением вторичных нейтронов (x > 1), способных вызвать деление других ядер урана, что открывает потенциальную возможность возникновения цепной реакции деления – один нейтрон может дать начало разветвленной цепи делений ядер урана. При этом число разделившихся ядер должно возрастать экспоненциально. Н. Бор и Дж. Уиллер рассчитали критическую энергию необходимую, чтобы ядро 236 U, образовавшееся в результате захвата нейтрона изотопом 235 U, разделилось. Эта величина равна 6,2 МэВ, что меньше энергии возбуждения изотопа 236 U, образующегося при захвате теплового нейтрона 235 U. Поэтому при захвате тепловых нейтронов возможна цепная реакция деления 235 U. Для наиболее распространенного изотопа 238 U критическая энергия равна 5,9 МэВ, в то время как при захвате теплового нейтрона энергия возбуждения образовавшегося ядра 239 U составляет только 5,2 МэВ. Поэтому цепная реакция деления наиболее распространенного в природе изотопа 238 U под действием тепловых нейтронов оказывается невозможной. В одном акте деления высвобождается энергия ≈ 200 МэВ (для сравнения в химических реакциях горения в одном акте реакции выделяется энергия ≈ 10 эВ). Возможности создания условий для цепной реакции деления открыли перспективы использования энергии цепной реакции для создания атомных реакторов и атомного оружия. Первый ядерный реактор был построен Э.Ферми в США в 1942 г. В СССР первый ядерный реактор был запущен под руководством И.Курчатова в 1946 г. В 1954 г. в г. Обнинске начала работать первая в мире атомная электро­станция. В настоящее время электрическая энергия вырабатывается примерно в 440 ядерных реакторах в 30 странах мира.
В 1940 г. Г.Флеров и К.Петржак открыли спонтанное деление урана. О сложности проведения эксперимента свидетельствуют следующие цифры. Парциальный период полураспада по отношению спонтанному делению изотопа 238 U составляет 10 16 –10 17 лет, в то время как период распада изотопа 238 U составляет 4.5∙10 9 лет. Основным каналом распада изотопа 238 U является α-распад. Для того, чтобы наблюдать спонтанное деление изотопа 238 U, нужно было регистрировать один акт деления на фоне 10 7 –10 8 актов α-распада.
Вероятность спонтанного деления в основном определяется проницаемостью барьера деления. Вероятность спонтанного деления увеличивается с увеличением заряда ядра, т.к. при этом увеличивается параметр деления Z 2 /A. В изотопах Z < 92-95 деление происходит преимущественно с образованием двух осколков деления с отношением масс тяжёлого и лёгкого осколков 3:2. В изотопах Z > 100 преобладает симметричное деление с образованием одинаковых по массе осколков. С увеличением заряда ядра доля спонтанного деления по сравнению с α-распадом увеличивается.

Изотоп Период полураспада Каналы распада
235 U 7.04·10 8 лет α (100%), SF (7·10 -9 %)
238 U 4.47·10 9 лет α (100%), SF (5.5·10 -5 %)
240 Pu 6.56·10 3 лет α (100%), SF (5.7·10 -6 %)
242 Pu 3.75·10 5 лет α (100%), SF (5.5·10 -4 %)
246 Cm 4.76·10 3 лет α (99,97%), SF (0.03%)
252 Cf 2.64 лет α (96,91%), SF (3.09%)
254 Cf 60.5 лет α (0,31%), SF (99.69%)
256 Cf 12.3 лет α (7.04·10 -8 %), SF (100%)

Деление ядер. История

1934 г. − Э. Ферми, облучая уран тепловыми нейтронами, обнаружил среди продуктов реакции радиоактивные ядра, природу которых установить не удалось.
Л. Сциллард выдвинул идею цепной ядерной реакции.

1939 г. − О. Ган и Ф. Штрассман обнаружили среди продуктов реакций барий.
Л. Мейтнер и О. Фриш впервые объявили, что под действием нейтронов происходило деление урана на два сравнимых по массе осколка.
Н. Бор и Дж. Уилер дали количественную интерпретацию деления ядра, введя параметр деления.
Я. Френкель развил капельную теорию деления ядер медленными нейтронами.
Л. Сциллард, Э. Вигнер, Э. Ферми, Дж. Уилер, Ф. Жолио-Кюри, Я. Зельдович, Ю. Харитон обосновали возможность протекания в уране цепной ядерной реакции деления.

1940 г. − Г. Флеров и К. Петржак открыли явление спонтанного деления ядер урана U.

1942 г. − Э. Ферми осуществил управляемую цепную реакцию деления в первом атомного реакторе.

1945 г. − Первое испытание ядерного оружия (штат Невада, США). На японские города Хиросима (6 августа) и Нагасаки (9 августа) американскими войсками были сброшены атомные бомбы.

1946 г. − Под руководством И.В. Курчатова был пущен первый в Европе реактор.

1954 г. − Запущена первая в мире атомная электростанция (г. Обнинск, СССР).

Деление ядер. С 1934 г. Э.Ферми стал применять нейтроны для бомбардировки атомов. С тех пор количество устойчивых или радиоактивных ядер, полученных путем искусственного превращения, возросло до многих сотен, и почти все места периодической системы заполнились изотопами.
Атомы, возникающие во всех этих ядерных реак­циях, занимали в периодической системе то же место, что и бомбардированный атом, или соседние места. Поэтому произвело большую сенсацию доказательство Ганом и Штрассманом в 1938 г. того, что при обстреле нейтронами последнего элемента периодической системы
урана происходит распад на элементы, которые стоят в средних частях периодической системы. Здесь выступают различные виды распада. Возникаю­щие атомы в большинстве своем неустойчивы и тотчас же распадаются дальше; у некоторых время полурас­пада измеряется секундами, так что Ган должен был применить аналитический метод Кюри для продления такого быстрого процесса. Важно отметить, что стоя­щие перед ураном элементы, протактиний и торий, также обнаруживают подобный распад под действием нейтронов, хотя для того, чтобы распад начался, требуется более высокая энергия нейтронов, чем в случае урана. Наряду с этим в 1940 г. Г. Н. Флеров и К. А. Петржак обнаружили спонтанное расщепление уранового ядра с самым большим из известных до тех пор периодом полураспада: около 2 ·10 15 лет; этот факт становится явным благодаря освобождающимся при этом нейтронам. Так явилась возможность понять, почему «естественная» периодическая система заканчивается тремя названными элементами. Теперь стали известны трансурановые элементы, но они настолько неустойчивы, что быстро распадаются.
Расщепление урана посредством нейтронов дает те­перь возможность того использования атомной энер­гии, которое уже многим мерещилось, как «мечта Жюля Верна».

М. Лауэ, «История физики»

1939 г. О. Ган и Ф. Штрассман, облучая соли урана тепловыми нейтронами, обнаружили среди продуктов реакции барий (Z = 56)


Отто Ганн
(1879 – 1968)

Деление ядер – расщепление ядра на два (реже три) ядра с близкими массами, которые называют осколками деления. При делении возникают и другие частицы – нейтроны, электроны, α-частицы. В результате деления высвобождается энергия ~200 МэВ. Деление может быть спонтанным либо вынужденным под действием других частиц, чаще всего нейтронов.
Характерной особенностью деления является то, что осколки деления, как правило, существенно различаются по массам, т. е. преобладает асимметричное деление. Так, в случае наиболее вероятного деления изотопа урана 236 U, отношение масс осколков равно 1.46. Тяжёлый осколок имеет при этом массовое число 139 (ксенон), а легкий – 95 (стронций). С учётом испускания двух мгновенных нейтронов рассматриваемая реакция деления имеет вид

Нобелевская премия по химии
1944 г. – О. Ган.
За открытие реакции деления ядер урана нейтронами.

Осколки деления


Зависимость средних масс легкой и тяжелой групп осколков от массы делящегося ядра.

Открытие деления ядер. 1939 г.

Я приехал в Швецию, где Лизе Мейтнер страдала от одиночества, и я, как преданный племянник, решил навестить ее на рождество. Она жила в маленьком отеле Кунгэльв около Гетеборга. Я застал ее за завтраком. Она обдумывала письмо, только что полученное ею от Гана. Я был весьма скептически настроен относительно содержания письма, в котором сообщалось об образовании бария при облучении урана нейтронами. Однако ее привлекла такая возможность. Мы гуляли по снегу, она пешком, я на лыжах (она сказала, что может проделать этот путь, не отстав от меня, и доказала это). К концу прогулки мы уже могли сформулировать некоторые выводы; ядро не раскалывалось, и от него не отлетали куски, а это был процесс, скорее напоминавший капельную модель ядра Бора; подобно капле ядро могло удлиняться и делиться. Затем я исследовал, каким образом электрический заряд нуклонов уменьшает поверхностное натяжение, которое, как мне удалось установить, падает до нуля при Z = 100 и, возможно, весьма мало для урана. Лизе Мейтнер занималась определением энергии, выделяющейся при каждом распаде из-за дефекта массы. Она очень ясно представляла себе кривую дефекта масс. Оказалось, что за счет электростатического отталкивания элементы деления приобрели бы энергию около 200 МэВ, а это как раз соответствовало энергии, связанной с дефектом массы. Поэтому процесс мог идти чисто классически без привлечения понятия прохождения через потенциальный барьер, которое, конечно, оказалось бы тут бесполезным.
Мы провели вместе два или три дня на рождество. Затем я вернулся в Копенгаген и едва успел сообщить Бору о нашей идее в тот самый момент, когда он уже садился на пароход, отправляющийся в США. Я помню, как он хлопнул себя по лбу, едва я начал говорить, и воскликнул: «О, какие мы были дураки! Мы должны были заметить это раньше». Но он не заметил, и никто не заметил.
Мы с Лизе Мейтнер написали статью. При этом мы постоянно поддерживали связь по междугородному телефону Копенгаген – Стокгольм.

О. Фриш, Воспоминания. УФН. 1968. Т. 96, вып.4, с. 697.

Спонтанное деление ядер

В описанных ниже опытах мы использовали метод, впервые предложенный Фришем для регистрации процессов деления ядер. Ионизационная камера с пластинами, покрытыми слоем окиси урана, соединяется с линейным усилителем, настроенным таким образом, что α частицы, вылетающие из урана, не регистрируются системой; импульсы же от осколков, намного превышающие по величине импульсы от α-частиц, отпирают выходной тиратрон и считаются механическим реле.
Была специально сконструирована ионизационная камера в виде многослойного плоского конденсатора с общей площадью 15 пластин в 1000 см. Пластины, расположенные друг от друга на расстоянии 3 мм, были покрыты слоем окиси урана 10-20 мг/см
2 .
В первых же опытах с настроенным для счета осколков усилителем удалось наблюдать самопроизвольные (в отсутствие источника нейтронов) импульсы на реле и осциллографе. Число этих импульсов было невелико (6 в 1 час), и вполне понятно поэтому, что это явление не могло наблю­даться с камерами обычного типа…
Мы склонны думать, что наблюдаемый нами эффект следует приписать осколкам, получающимся в результате спонтанного деления урана…

Спонтанное деление следует приписать одному из невозбужденных изотопов U с периодами полураспада, полученными из оценки наших результатов:

U 238 – 10 16 ~ 10 17 лет,
U
235 – 10 14 ~ 10 15 лет,
U
234 – 10 12 ~ 10 13 лет.

Распад изотопа 238 U

Спонтанное деление ядер


Периоды полураспада спонтанно делящихся изотопов Z = 92 - 100

Первая экспериментальная система с уран-графитовой решёткой была построена в 1941 г. под руководством Э. Ферми. Она представляла собой графитовый куб с ребром длиной 2,5 м, содержащий около 7 т окиси урана, заключенной в железные сосуды, которые были размещены в кубе на одинаковых расстояниях друг от друга. На дне уран-графитовой решётки был помещён RaBe источник нейтронов. Коэффициент размножения в такой системе был ≈ 0.7. Окись урана содержала от 2 до 5% примесей. Дальнейшие усилия были направлены на получение более чистых материалов и к маю 1942 г. была получены окись урана, в которой примесь составляла меньше 1%. Чтобы обеспечить цепную реакцию деления, было необходимо использовать большое количество графита и урана – порядка нескольких тонн. Примеси должны были составлять меньше нескольких миллионных долей. Реактор, собранный к концу 1942 г. Ферми в Чикагском университете, имел форму срезанного сверху неполного сфероида. Он содержал 40 т урана и 385 т графита. Вечером 2 декабря 1942 г. после того, как были убраны стержни нейтронного поглотителя, было обнаружено, что внутри реактора происходит цепная ядерная реакция. Измеренный коэффициент составлял 1.0006. Вначале реактор работал на уровне мощности 0.5 Вт. К 12 декабря его мощность была увеличена до 200 Вт. В дальнейшем реактор был перенесен в более безопасное место, и мощность его была повышена до нескольких кВт. При этом реактор потреблял 0.002 г урана-235 в день.

Первый ядерный реактор в СССР

Здание для первого в СССР исследовательского ядерного реактора Ф-1 было готово к июню 1946 г.
После того как были проведены все необходимые эксперименты, раз­работана система управления и защиты реактора, установлены размеры реактора, проведены все необходимые опыты с моделями реактора, определена плотность нейтронов на нескольких моделях, получены графитовые блоки (так называемой ядерной чистоты) и (после нейтронно-физической проверки) урановые блочки, в ноябре 1946 г. приступили к сооружению реактора Ф-1.
Общий радиус реактора был 3,8 м. Для него потребовалось 400 т графита и 45 т урана. Реактор собирали слоями и в 15 ч 25 декабря 1946 г. был собран последний, 62-й слой. После извлечения так называемых аварийных стержней был произведен подъем регулирующего стержня, начался отсчет плотности нейтронов, и в 18 ч 25 декабря 1946 г. ожил, заработал первый в СССР реактор. Это была волнующая победа ученых - создателей ядерного реактора и всего советского народа. А через полтора года, 10 июня 1948 г., промышленный реактор с водой в каналах достиг критического состояния и вскоре началось промышленное производство нового вида ядерного горючего − плутония.



Вверх