Error: не определено #11234. Определение функции распределения. Функция распределения вероятностей случайной величины и ее свойства

Определение функции распределения. Функция распределения вероятностей случайной величины и ее свойства

В предыдущем n° мы ввели в рассмотрение ряд распределения как исчерпывающую характеристику (закон распределения) прерывной случайной величины. Однако эта характеристика не является универсальной; она существует только для прерывных случайных величин. Нетрудно убедиться, что для непрерывной случайной величины такой характеристики построить нельзя. Действительно, непрерывная случайная величина имеет бесчисленное множество возможных значений, сплошь заполняющих некоторый промежуток (так называемое «счетное множество»). Составить таблицу, в которой были бы перечислены все возможные значения такой случайной величины, невозможно. Кроме того, как мы увидим в дальнейшем, каждое отдельное значение непрерывной случайной величины обычно не обладает никакой отличной от нуля вероятностью. Следовательно, для непрерывной случайной величины не существует ряда распределения в том смысле, в каком он существует для прерывной величины. Однако различные области возможных значений случайной величины все же не являются одинаково вероятными, и для непрерывной величины существует «распределение вероятностей», хотя и не в том смысле, как для прерывной.

Для количественной характеристики этого распределения вероятностей удобно воспользоваться не вероятностью события , а вероятностью события , где – некоторая текущая переменная. Вероятность этого события, очевидно, зависит от , есть некоторая функция от . Эта функция называется функцией распределения случайной величины и обозначается :

. (5.2.1)

Функцию распределения иногда называют также интегральной функцией распределения или интегральным законом распределения.

Функция распределения – самая универсальная характеристика случайной величины. Она существует для всех случайных величин: как прерывных, так и непрерывных. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения, т.е. является одной из форм закона распределения.

Сформулируем некоторые общие свойства функции распределения.

1. Функция распределения есть неубывающая функция своего аргумента, т.е. при .

2. На минус бесконечности функция распределения равна нулю:.

3. На плюс бесконечности функция распределения равна единице: .

Не давая строгого доказательства этих свойств, проиллюстрируем их с помощью наглядной геометрической интерпретации. Для этого будем рассматривать случайную величину как случайную точку на оси Ох (рис. 5.2.1), которая в результате опыта может занять то или иное положение. Тогда функция распределения есть вероятность того, что случайная точка в результате опыта попадет левее точки .

Будем увеличивать , т. е. перемещать точку вправо по оси абсцисс. Очевидно, при этом вероятность того, что случайная точка попадет левее , не может уменьшиться; следовательно, функция распределения с возрастанием убывать не может.

Чтобы убедиться в том, что , будем неограниченно перемещать точку влево по оси абсцисс. При этом попадание случайной точки левее в пределе становится невозможным событием; естественно полагать, что вероятность этого события стремится к нулю, т.е. .

Аналогичным образом, неограниченно перемещая точку вправо, убеждаемся, что , так как событие становится в пределе достоверным.

График функции распределения в общем случае представляет собой график неубывающей функции (рис. 5.2.2), значения которой начинаются от 0 и доходят до 1, причем в отдельных точках функция может иметь скачки (разрывы).

Зная ряд распределения прерывной случайной величины, можно легко построить функцию распределения этой величины. Действительно,

,

где неравенство под знаком суммы указывает, что суммирование распространяется на все те значения , которые меньше .

Когда текущая переменная проходит через какое-нибудь из возможных значений прерывной величины , функция распределения меняется скачкообразно, причем величина скачка равна вероятности этого значения.

Пример 1. Производится один опыт, в котором может появиться или не появиться событие . Вероятность события равна 0,3. Случайная величина – число появлений события в опыте (характеристическая случайная величина события ). Построить её функцию распределения.

Решение. Ряд распределения величины имеет вид:

Построим функцию распределения величины :

График функции распределения представлен на рис. 5.2.3. В точках разрыва функция принимает значения, отмеченные на чертеже точками (функция непрерывна слева).

Пример 2. В условиях предыдущего примера производится 4 независимых опыта. Построить функцию распределения числа появлений события .

Решение. Обозначим – число появлений события в четырех опытах. Эта величина имеет ряд распределения

Построим функцию распределения случайной величины :

3) при ;

На практике обычно функция распределения непрерывной случайной величины представляет собой функцию, непрерывную во всех точках, как это показано на рис. 5.2.6. Однако можно построить примеры случайных величин, возможные значения которых непрерывно заполняют некоторый промежуток, но для которых функция распределения не везде является непрерывной, а в отдельных точках терпит разрыв (рис. 5.2.7).

Такие случайные величины называются смешанными. В качестве примера смешанной величины можно привести площадь разрушений, наносимых цели бомбой, радиус разрушительного действия которой равен R (рис. 5.2.8).

Значения этой случайной величины непрерывно заполняют промежуток от 0 до , осуществляющиеся при положениях бомбы типа I и II, обладают определенной конечной вероятностью, и этим значениям соответствуют скачки функции распределения, тогда как в промежуточных значениях (положение типа III) функция распределения непрерывна. Другой пример смешанной случайной величины – время T безотказной работы прибора, испытываемого в течение времени t. Функция распределения этой случайной величины непрерывна всюду, кроме точки t.

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной , если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.

Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.

Так как для непрерывных случайных величин функция F (x ), в отличие от дискретных случайных величин , нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Это значит, что для непрерывной случайной величины бессмысленно говорить о распределении вероятностей между её значениями: каждое из них имеет нулевую вероятность. Однако в некотором смысле среди значений непрерывной случайной величины есть "более и менее вероятные". Например, вряд ли у кого-либо возникнет сомнение, что значение случайной величины - роста наугад встреченного человека - 170 см - более вероятно, чем 220 см, хотя и одно, и другое значение могут встретиться на практике.

Функция распределения непрерывной случайной величины и плотность вероятности

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.

Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

Для дискретной случайной величины в точках её значений x 1 , x 2 , ..., x i ,... сосредоточены массы вероятностей p 1 , p 2 , ..., p i ,... , причём сумма всех масс равна 1. Перенесём эту интерпретацию на случай непрерывной случайной величины. Представим себе, что масса, равная 1, не сосредоточена в отдельных точках, а непрерывно "размазана" по оси абсцисс Оx с какой-то неравномерной плотностью. Вероятность попадания случайной величины на любой участок Δx будет интерпретироваться как масса, приходящаяся на этот участок, а средняя плотность на этом участке - как отношение массы к длине. Только что мы ввели важное понятие теории вероятностей: плотность распределения.

Плотностью вероятности f (x ) непрерывной случайной величины называется производная её функции распределения:

.

Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [a ; b ]:

вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a ; b ], равна определённому интегралу от её плотности вероятности в пределах от a до b :

.

При этом общая формула функции F (x ) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f (x ) :

.

График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох , графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b .

Свойства функции плотности вероятности непрерывной случайной величины

1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f (x ) и ось Ох ) равна единице:

2. Функция плотности вероятности не может принимать отрицательные значения:

а за пределами существования распределения её значение равно нулю

Плотность распределения f (x ), как и функция распределения F (x ), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

Если функция плотности распределения f (x ) непрерывной случайной величины в некотором конечном интервале [a ; b ] принимает постоянное значение C , а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным .

Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным .

Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

Найти функцию f (x ) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

График функции F (x ) - парабола:

График функции f (x ) - прямая:

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:

Вычислить коэффициент C . Найти функцию F (x ) распределения вероятностей непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 0 до 5: .

Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:

Таким образом, функция плотности вероятности непрерывной случайной величины:

Интегрируя, найдём функцию F (x ) распределения вероятностей. Если x < 0 , то F (x ) = 0 . Если 0 < x < 10 , то

.

x > 10 , то F (x ) = 1 .

Таким образом, полная запись функции распределения вероятностей:

График функции f (x ) :

График функции F (x ) :

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:

Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А , вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X .

Решение. По условию приходим к равенству

Следовательно, , откуда . Итак,

.

Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

Теперь получим функцию распределения данной случайной величины:

Пример 4. Найти плотность вероятности непрерывной случайной величины X , которая принимает только неотрицательные значения, а её функция распределения .

Содержание статьи

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ – плотность вероятности распределения частиц макроскопической системы по координатам, импульсам или квантовым состояниям. Функция распределения является основной характеристикой самых разнообразных (не только физических) систем, которым свойственно случайное поведение, т.е. случайное изменение состояния системы и, соответственно, ее параметров. Даже в стационарных внешних условиях само состояние системы может быть таким, что результат измерения некоторого его параметра является случайной величиной. Функция распределения в подавляющем большинстве случаев содержит в себе всю возможную и потому исчерпывающую информацию о свойствах таких систем.

В математической теории вероятностей и математической статистике функция распределения и плотность вероятности отличаются друг от друга, но однозначно связаны между собой. Ниже речь пойдет почти исключительно о плотности вероятности, которую (согласно принятой в физике давней традиции) называют плотностью распределения вероятности или функцией распределения, ставя знак равенства между этими двумя терминами.

Случайное поведение в той или иной мере характерно для всех квантовомеханических систем: элементарные частицы, атомы молекулы и т.п. Однако случайное поведение – это не специфическая черта только квантовомеханических систем, многие чисто классические системы обладают этим свойством.

Примеры.

При бросании монеты на твердую горизонтальную поверхность, неясно, как она ляжет: цифрой вверх или гербом. Известно, что вероятности этих событий, при определенных условиях, равны 1/2. При бросании игральной кости нельзя с уверенностью сказать, какая из шести цифр окажется на верхней грани. Вероятность выпадения каждой из цифр при определенных предположениях (кость – однородный куб без сколотых ребер и вершин падает на твердую, гладкую горизонтальную поверхность) равна 1/6.

Хаотичность движения молекул в наибольшей степени проявляется в газе. Даже в стационарных внешних условиях, флуктуируют (меняются случайным образом) точные значения макроскопических параметров, и только их средние значения при этом постоянны. Описание макроскопических систем на языке средних значений макропараметров и составляет суть термодинамического описания ().

Пусть есть идеальный одноатомный газ и три его (еще не усредненных) макроскопических параметра: N – число атомов, движущихся внутри сосуда, занятого газом; P –давление газа на стенку сосуда и – внутренняя энергия газа. Газ идеальный и одноатомный, поэтому его внутренняя энергия есть просто сумма кинетических энергий поступательного движения атомов газа.

Число N флуктуирует, по крайней мере, из-за процесса сорбции (прилипания к стенке сосуда при соударении с ней) и десорбции (процесса отлипания, когда молекула отрывается от стенки сама по себе или в результате удара по ней другой молекулы), наконец, процесса образования кластеров – короткоживущих комплексов из нескольких молекул. Если бы Можно было измерять N мгновенно и точно, то полученная зависимость N (t ) была бы похожей на изображенную на рисунке.

Размах флуктуаций на рисунке для наглядности сильно завышен, но при небольшом среднем значении (бN с ~ 10 2) числа частиц в газе он примерно таким и будет.

Если выбрать маленькую площадку на стенке сосуда измерять силу, действующую на эту площадку в результате ударов молекул газа, находящегося в сосуде, то отношение среднего значения нормальной к площадке компоненты этой силы к площади площадки и принято называть давлением. В разные моменты времени к площадке будет подлетать разное количество молекул, причем с разными скоростями. В результате, если бы можно было измерять эту силу мгновенно и точно, была бы картина, подобная изображенной на рисунке, нужно только изменить обозначения по вертикальной оси:

N (t ) Ю P (t ) и бN (t )с Ю бP (t )с.

Практически все то же справедливо и для внутренней энергии газа , только процессы, приводящие к случайным изменениям данной суммы другие. Например, подлетая к стенке сосуда, молекула газа сталкивается не с абстрактной абсолютно упруго и зеркально отражающей стенкой, а с одной из частиц, составляющих материал этой стенки. Пусть стенка стальная, тогда это ионы железа, колеблющиеся около положений равновесия – узлов кристаллической решетки. Если молекула газа подлетает к стенке на той фазе колебаний иона, когда он движется ей навстречу, то в результате соударения молекула отлетит от стенки со скоростью большей чем подлетала. Вместе с энергией этой молекулы увеличится и внутренняя энергия газа E . Если молекула сталкивается с ионом, движущемся в том же направлении, что и она, то отлетит эта молекула со скоростью меньшей, чем та, с которой она полетала. Наконец, молекула может попасть в междуузелье (пустое место между соседними узлами кристаллической решетки) и застрять там, так, что даже сильным нагревом ее не извлечь оттуда. В последних двух случаях внутренняя энергия газа E уменьшится. Следовательно, E (t ) – также случайная функция времени и – среднее значение этой функции.

Броуновское движение.

Определив положение броуновской частицы в некоторый момент времени t 1, можно точно предсказать только то, что ее положение в последующий момент времени t 2 не превышает (t 2 – t 1)·c , где c – скорость света в вакууме.

Различают случаи дискретного и непрерывного спектра состояний и, соответственно, переменной x . Под спектром значений некоторой переменной понимается вся совокупность возможных ее значений.

В случае дискретного спектрасостояний для задания распределения вероятностей нужно, во-первых, указать полный набор возможных значений случайной переменной

x 1, x 2, x 3,… x k,… (1)

и, во-вторых, их вероятности:

W 1, W 2, W 3,… W k,… (2)

Сумма вероятностей всех возможных событий должна быть равна единице (условие нормировки)

Описание распределения вероятностей соотношениями (1) – (3) невозможно в случае непрерывного спектра состояний и, соответственно, непрерывного спектра возможных значений переменной x . Пусть x принимает все возможные действительные значения в интервале

x О [a , b ] (4)

где a и b необязательно конечны. Например, для модуля вектора скорости молекулы газа V О , лежащему внутри всего интервала возможных значений, т.е. x О [x , x + Dx ] О [a , b ] (5)

Тогда вероятность DW (x , Dx ) попадания x в интервал (5) равна

Здесь N – полное число измерений x , а Dn (x , Dx ) – число результатов, попавших в интервал (5).

Вероятность DW естественно зависит от двух аргументов: x – положения интервала внутри [a , b ] и Dx – его длины (предполагается, хотя это совершенно необязательно, что Dx > 0). Например, вероятность получения точного значения x , другими словами, вероятность попадания x в интервал нулевой длины есть вероятность невозможного события и потому равна нулю: DW (x , 0) = 0

С другой стороны, вероятность получить значение x где-то (все равно где) внутри всего интервала [a , b ] есть вероятность достоверного события (уж что-нибудь всегда получается) и потому равна единице (принимается, что b > a ): DW (a , b a ) = 1.

Пусть Dx мало. Критерий достаточной малости зависит от конкретных свойств системы, которую описывает распределение вероятностей DW (x , Dx ). Если Dx мало, то функцию DW (x , Dx ) можно разложить в ряд по степеням Dx :

Если нарисовать график зависимости DW (x , Dx ) от второго аргумента Dx , то замена точной зависимости приближенным выражением (7) означает замену (на небольшом участке) точной кривой куском параболы (7).

В (7) первое слагаемое равно нулю точно, третье и последующие слагаемые при достаточной малости Dx можно опустить. Введение обозначения

дает важный результат DW (x , Dx ) » r(x )·Dx (8)

Соотношение (8), выполняемое тем точнее, чем меньше Dx означает, что при малой длине интервала, вероятность попадания в этот интервал пропорциональна его длине.

Можно еще перейти от малого, но конечного Dx к формально бесконечно малому dx , с одновременной заменой DW (x , Dx ) на dW (x ). Тогда приближенное равенство (8) превращается в точное dW (x ) = r(x dx (9)

Коэффициент пропорциональности r(x ) имеет простой смысл. Как видно из (8) и (9), r(x ) численно равно вероятности попадания x в интервал единичной длины. Поэтому одно из названий функции r(x ) – плотность распределения вероятностей для переменной x .

Функция r(x ) содержит в себе всю информацию о том, как вероятность dW (x ) попадания x в интервал заданной длины dx зависит от местоположения этого интервала, т.е. она показывает, как вероятность распределена по x . Поэтому функцию r(x ) принято называть функцией распределения для переменной x и, тем самым, функцией распределения для той физической системы, ради описания спектра состояний которой была введена переменная x . Термины «плотность распределения вероятностей» и «функция распределения» в статистической физике используются как эквивалентные.

Можно рассмотреть обобщение определения вероятности (6) и функции распределения (9) на случай, к примеру, трех переменных. Обобщение на случай произвольно большого числа переменных выполняется точно также.

Пусть случайно меняющееся во времени состояние физической системы определяется значениями трех переменных x , y и z с непрерывным спектром:

x О [a , b ]

y О [c , d ]

z О [e , f ] (10)

где a , b ,…, f , как и ранее, не обязательно конечны. Переменные x , y и z могут быть, например, координатами центра масс молекулы газа, компонентами вектора ее скорости x Ю V x , y Ю V y и z Ю V z или импульса и т.д. Под событием понимается одновременное попадание всех трех переменных в интервалы длины Dx , Dy и Dz соответственно, т.е.:

x О [x , x + Dx ]

y О [y , y + Dy ]

z О [z , z + Dz ] (11)

Вероятность события (11) можно определить аналогично (6)

с тем отличием, что теперь Dn – число измерений x , y и z , результаты которых одновременно удовлетворяют соотношениям (11). Использование разложения в ряд, аналогичного (7), дает

dW (x , y , z ) = r(x , y , z dx dy dz (13)

где r(x , y , z ) – функция распределения сразу для трех переменных x , y и z .

В математической теории вероятностей термин «функция распределения» используется для обозначения величины отличающейся от r(x ), а именно: пусть x – некоторое значение случайной переменной x . Функция Ф(x), дающая вероятность того, что x примет значение не большее, чем x и называется функцией распределения. Функции r и Ф имеют разный смысл, но они связаны между собой. Использование теоремы сложения вероятностей дает (здесь а – левый конец интервала возможных значений x (см. ВЕРОЯТНОСТЕЙ ТЕОРИЯ): , (14) откуда

Использование приближенного соотношения (8) дает DW (x , Dx ) » r(x )·Dx .

Сравнение с точным выражением (15) показывает, что использование (8) эквивалентно замене интеграла, входящего в (16), произведением подынтегральной функции r(x ) на длину промежутка интегрирования Dx :

Соотношение (17) будет точным, если r = const , следовательно, ошибка при замене (16) на (17) будет невелика, когда подынтегральная функция слабо меняется на длине промежутка интегрирования Dx .

Можно ввести Dx эфф – длину интервала, на котором функция распределения r(x ) меняется существенно, т.е. на величину порядка самой функции, или величина Drэфф по модулю порядка r. Используя формулу Лагранжа, можно написать:

откуда следует, что Dx эфф для любой функции r

Функцию распределения можно считать «почти постоянной» на некотором промежутке изменения аргумента, если ее приращение |Dr| на этом промежутке по модулю много меньше самой функции в точках этого промежутка. Требование |Dr| эфф| ~ r (функция распределения r і 0) дает

Dx x эфф (20)

длина промежутка интегрирования должна быть мала по сравнению с той, на которой подынтегральная функция меняется существенно. Иллюстрацией служит рис. 1.

Интеграл в левой части (17) равен площади под кривой. Произведение в правой части (17) – площадь заштрихованного на рис. 1 столбика. Критерием малости отличия соответствующих площадей является выполнение неравенства (20). В этом можно убедиться, подставляя в интеграл (17) первые члены разложения функции r(x ) в ряд по степеням

Требование малости поправки (второго слагаемого в правой части (21) по сравнению с первым и дает неравенство (20) с Dx эфф из (19).

Примеры ряда функций распределения, играющих важную роль в статистической физике.

Распределение Максвелла для проекции вектора скорости молекулы на заданное направление (для примера, это направление оси OX ).

Здесь m – масса молекулы газа, T – его температура, k – постоянная Больцмана.

Распределение Максвелла для модуля вектора скорости :

Распределение Максвелла для энергии поступательного движения молекул e = mV 2/2

Распределение Больцмана , точнее, так называемая барометрическая формула, которая определяет распределение концентрации молекул или давления воздуха по высоте h от некоторого «нулевого уровня» в предположении, что температура воздуха от высоты не зависит (модель изотермической атмосферы). В действительности температура в нижних слоях атмосферы заметно падает с ростом высоты.

3. Функция распределения является неубывающей : если , то

4. Функция распределения непрерывна слева : для любого .

Примечание . Последнее свойство обозначает, какие значения принимает функция распределения в точках разрыва. Иногда определение функции распределения формулируют с использованием нестрогого неравенства: . В этом случае непрерывность слева заменяется на непрерывность справа: при . Никакие содержательные свойства функции распределения при этом не меняются, поэтому данный вопрос является лишь терминологическим.

Свойства 1-4 являются характеристическими, т.е. любая функция , удовлетворяющая этим свойствам, является функцией распределения некоторой случайной величины.

Функция распределения задает распределение вероятностей случайной величины однозначно. Фактически, она является универсальным и наиболее наглядным способом описания этого распределения.

Чем сильнее функция распределения растет на заданном интервале числовой оси, тем выше вероятность попадания случайной величины в этот интервал. Если вероятность попадания в интервал равна нулю, то функция распределения на нем постоянна.

В частности, вероятность того, что случайная величина примет заданное значение , равна скачку функции распределения в данной точке:

.

Если функция распределения непрерывна в точке , то вероятность принять данное значение для случайной величины равна нулю. В частности, если функция распределения непрерывна на всей числовой оси (при этом и соответствующее распределение называется непрерывным ), то вероятность принять любое заданное значение равна нулю.

Из определения функции распределения вытекает, что вероятность попадания случайной величины в интервал, замкнутый слева и открытый справа, равна:

С помощью данной формулы и указанного выше способа нахождения вероятности попадания в любую заданную точку, легко определяются вероятности попадания случайной величины в интервалы других типов: , и . Далее, по теореме о продолжении меры, можно однозначно продолжить меру на все борелевские множества числовой прямой . Для того, чтобы применить эту теорему, требуется показать, что таким образом определенная на интервалах мера является на них сигма-аддитивной; при доказательстве этого в точности используются свойства 1-4 (в частности, свойство непрерывности слева 4, поэтому отбросить его нельзя).

Генерация случайной величины, имеющей заданное распределение

Рассмотрим случайную величину , имеющую функцию распределения . Предположим, что непрерывна . Рассмотрим случайную величину

.

Легко показать, что тогда будет иметь равномерное распределение на отрезке .

Функция распределения вероятностей случайной величины и ее свойства.

Рассмотрим функцию F(х) , определенную на всей числовой оси следующим образом: для каждого х значение F(х) равно вероятности того, что дискретная случайная величина примет значение, меньшее х , т. е.

(18)

Эта функция называется функцией распределения вероятностей , или кратко, функцией распределения .

Пример 1. Найти функцию распределения случайной величины , приведенной в примере 1, п. 1.

Решение: Ясно, что если , то F(x)=0 , так как не принимает значений, меньших единицы. Если , то ; если , то . Но событие <3 в данном случае является суммой двух несовместных событий: =1 и =2. Следовательно,

Итак для имеем F(x)=1/3 . Аналогично вычисляются значения функции в промежудках , и . Наконец, если x>6 то F(x)=1 , так как в этом случае любое возможное значение (1, 2, 3, 4, 5, 6) меньше, чем x . График функции F(x) изображен на рис. 4.

Пример 2. Найти функцию распределения случайной величины , приведенной в примере 2, п. 1.

Решение: Очевидно, что

График F(x) изображен на рис. 5.

Зная функцию распределения F(x) , легко найти вероятность того, что случайная величина удовлетворяет неравенствам .
Рассмотрим событие, заключающееся в том, что случайняя величина примет значение, меньшее . Это событие распадается на сумму двух несовместных событий: 1) случайная величина принимает значения, меньшие , т.е. ; 2) случайная величина принимает значения, удовлетворяющие неравенствам . Используя аксиому сложения, получаем

Но по определению функции распределения F(x) [см. формулу (18)], имеем , ; cледовательно,

(19)

Таким образом, вероятность попадания дискретной случайной величины в интервал равна приращению функции распределения на этом интервале.

Рассмотрим основные свойства функции распределения.
1°. Функция распределения является неубывающей.
В самом деле, пусть < . Так как вероятность любого события неотрицательна, то . Поэтому из формулы (19) следует, что , т.е. .

2°. Значения функции распределения удовлетворяют неравенствам .
Это свойство вытекает из того, что F(x) определяется как вероятность [см. формулу (18)]. Ясно, что * и .

3°. Вероятность того, что дискретная случайная величина примет одно из возможных значений xi, равна скачку функции распределения в точке xi .
Действительно, пусть xi - значение, принимаемое дискретной случайной величиной, и . Полагая в формуле (19) , , получим

Т.е. значение p(xi) равно скачку функции ** xi . Это свойство наглядно иллюстрируется на рис. 4 и рис. 5.

* Здесь и в дальнейшем введены обозначения: , .
** Можно показать, что F(xi)=F(xi-0) , т.е. что функция F(x) непрерывна слева в точке xi .

3. Непрерывные случайные величины.

Кроме дискретных случайных величин, возможные значения которых образуют конечную или бесконечную последовательность чисел, не заполняющих сплошь никакого интервала, часто встречаются случайные величины, возможные значения которых образуют некоторый интервал. Примером такой случайной величины может служить отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе. Такого рода, случайные величины не могут быть заданы с помощью закона распределения вероятностей р(х) . Однако их можно задать с помощью функции распределения вероятностей F(х) . Эта функция определяется точно так же, как и в случае дискретной случайной величины:

Таким образом, и здесь функция F(х) определена на всей числовой оси, и ее значение в точке х равно вероятности того, что случайная величина примет значение, меньшее чем х .
Формула (19) и свойства 1° и 2° справедливы для функции распределения любой случайной величины. Доказательство проводится аналогично случаю дискретной величины.
Случайная величина называется непрерывной , если для нее существует неотрицательная кусочно-непрерывная функция* , удовлетворяющая для любых значений x равенству

Исходя из геометрического смысла интеграла как площади, можно сказать, что вероятность выполнения неравенств равна площади криволинейной трапеции с основанием , ограниченной сверху кривой (рис. 6).

Так как , а на основании формулы (22)

Заметим, что для непрерывной случайной величины функция распределения F(х) непрерывна в любой точке х , где функция непрерывна. Это следует из того, что F(х) в этих точках дифференцируема.
На основании формулы (23), полагая x 1 =x , , имеем

В силу непрерывности функции F(х) получим, что

Следовательно

Таким образом, вероятность того, что непрерывная случайная величина может принять любое отдельное значение х, равна нулю .
Отсюда следует, что события, заключающиеся в выполнении каждого из неравенств

Имеют одинаковую вероятность, т.е.

В самом деле, например,

Так как

Замечание. Как мы знаем, если событие невозможно, то вероятность его наступления равна нулю. При классическом определении вероятности, когда число исходов испытания конечно, имеет место и обратное предложение: если вероятность события равна нулю, то событие невозможно, так как в этом случае ему не благоприятствует ни один из исходов испытания. В случае непрерывной случайной величины число возможных ее значений бесконечно. Вероятность того, что эта величина примет какое-либо конкретное значение x 1 как мы видели, равна нулю. Однако отсюда не следует, что это событие невозможно, так как в результате испытания случайная величина может, в частности, принять значение x 1 . Поэтому в случае непрерывной случайной величины имеет смысл говорить о вероятности попадания случайной величины в интервал, а не о вероятности того, что она примет какое-то конкретное значение.
Так, например, при изготовлении валика нас не интересует вероятность того, что его диаметр будет равен номиналу. Для нас важна вероятность того, что диаметр валика не выходит из поля допуска.

Вверх