Колебания силы тока в колебательном контуре. Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний — Гипермаркет знаний

  • Электромагнитные колебания – это периодические изменения со временем электрических и магнитных величин в электрической цепи.
  • Свободными называются такие колебания , которые возникают в замкнутой системе вследствие отклонения этой системы от состояния устойчивого равновесия.

При колебаниях происходит непрерывный процесс превращения энергии системы из одной формы в другую. В случае колебаний электромагнитного поля обмен может идти только между электрической и магнитной составляющей этого поля. Простейшей системой, где может происходить этот процесс, является колебательный контур .

  • Идеальный колебательный контур (LC-контур ) - электрическая цепь, состоящая из катушки индуктивностью L и конденсатора емкостью C .

В отличие от реального колебательного контура, который обладает электрическим сопротивлением R , электрическое сопротивление идеального контура всегда равна нулю. Следовательно, идеальный колебательный контур является упрощенной моделью реального контура.

На рисунке 1 изображена схема идеального колебательного контура.

Энергии контура

Полная энергия колебательного контура

\(W=W_{e} + W_{m}, \; \; \; W_{e} =\dfrac{C\cdot u^{2} }{2} = \dfrac{q^{2} }{2C}, \; \; \; W_{m} =\dfrac{L\cdot i^{2}}{2},\)

Где W e - энергия электрического поля колебательного контура в данный момент времени, С - электроемкость конденсатора, u - значение напряжения на конденсаторе в данный момент времени, q - значение заряда конденсатора в данный момент времени, W m - энергия магнитного поля колебательного контура в данный момент времени, L - индуктивность катушки, i -значение силы тока в катушке в данный момент времени.

Процессы в колебательном контуре

Рассмотрим процессы, которые возникают в колебательном контуре.

Для выведения контура из положения равновесия зарядим конденсатор так, что на его обкладках будет заряд Q m (рис. 2, положение 1 ). С учетом уравнения \(U_{m}=\dfrac{Q_{m}}{C}\) находим значение напряжения на конденсаторе. Тока в цепи в этом момент времени нет, т.е. i = 0.

После замыкания ключа под действием электрического поля конденсатора в цепи появится электрический ток, сила тока i которого будет увеличиваться с течением времени. Конденсатор в это время начнет разряжаться, т.к. электроны, создающие ток, (Напоминаю, что за направление тока принято направление движения положительных зарядов) уходят с отрицательной обкладки конденсатора и приходят на положительную (см. рис. 2, положение 2 ). Вместе с зарядом q будет уменьшаться и напряжение u \(\left(u = \dfrac{q}{C} \right).\) При увеличении силы тока через катушку возникнет ЭДС самоиндукции, препятствующая изменению силы тока. Вследствие этого, сила тока в колебательном контуре будет возрастать от нуля до некоторого максимального значения не мгновенно, а в течение некоторого промежутка времени, определяемого индуктивностью катушки.

Заряд конденсатора q уменьшается и в некоторый момент времени становится равным нулю (q = 0, u = 0), сила тока в катушке достигнет некоторого значения I m (см. рис. 2, положение 3 ).

Без электрического поля конденсатора (и сопротивления) электроны, создающие ток, продолжают свое движение по инерции. При этом электроны, приходящие на нейтральную обкладку конденсатора, сообщают ей отрицательный заряд, электроны, уходящие с нейтральной обкладки, сообщают ей положительный заряд. На конденсаторе начинает появляться заряд q (и напряжение u ), но противоположного знака, т.е. конденсатор перезаряжается. Теперь новое электрическое поле конденсатора препятствует движению электронов, поэтому сила тока i начинает убывать (см. рис. 2, положение 4 ). Опять же это происходит не мгновенно, поскольку теперь ЭДС самоиндукции стремится скомпенсировать уменьшение тока и «поддерживает» его. А значение силы тока I m (в положении 3 ) оказывается максимальным значением силы тока в контуре.

И снова под действием электрического поля конденсатора в цепи появится электрический ток, но направленный в противоположную сторону, сила тока i которого будет увеличиваться с течением времени. А конденсатор в это время будет разряжаться (см. рис. 2, положение 6 )до нуля (см. рис. 2, положение 7 ). И так далее.

Так как заряд на конденсаторе q (и напряжение u ) определяет его энергию электрического поля W e \(\left(W_{e}=\dfrac{q^{2}}{2C}=\dfrac{C \cdot u^{2}}{2} \right),\) а сила тока в катушке i - энергию магнитного поля Wm \(\left(W_{m}=\dfrac{L \cdot i^{2}}{2} \right),\) то вместе с изменениями заряда, напряжения и силы тока, будут изменяться и энергии.

Обозначения в таблице:

\(W_{e\, \max } =\dfrac{Q_{m}^{2} }{2C} =\dfrac{C\cdot U_{m}^{2} }{2}, \; \; \; W_{e\, 2} =\dfrac{q_{2}^{2} }{2C} =\dfrac{C\cdot u_{2}^{2} }{2}, \; \; \; W_{e\, 4} =\dfrac{q_{4}^{2} }{2C} =\dfrac{C\cdot u_{4}^{2} }{2}, \; \; \; W_{e\, 6} =\dfrac{q_{6}^{2} }{2C} =\dfrac{C\cdot u_{6}^{2} }{2},\)

\(W_{m\; \max } =\dfrac{L\cdot I_{m}^{2} }{2}, \; \; \; W_{m2} =\dfrac{L\cdot i_{2}^{2} }{2}, \; \; \; W_{m4} =\dfrac{L\cdot i_{4}^{2} }{2}, \; \; \; W_{m6} =\dfrac{L\cdot i_{6}^{2} }{2}.\)

Полная энергия идеального колебательного контура сохраняется с течением времени, поскольку в нем потерь энергии (нет сопротивления). Тогда

\(W=W_{e\, \max } = W_{m\, \max } = W_{e2} + W_{m2} = W_{e4} +W_{m4} = ...\)

Таким образом, в идеальном LC -контуре будут происходить периодические изменения значений силы тока i , заряда q и напряжения u , причем полная энергия контура при этом будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания .

  • Свободные электромагнитные колебания в контуре - это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без потребления энергии от внешних источников.

Таким образом, возникновение свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора и возникновением ЭДС самоиндукции в катушке, которая «обеспечивает» эту перезарядку. Заметим, что заряд конденсатора q и сила тока в катушке i достигают своих максимальных значений Q m и I m в различные моменты времени.

Свободные электромагнитные колебания в контуре происходят по гармоническому закону:

\(q=Q_{m} \cdot \cos \left(\omega \cdot t+\varphi _{1} \right), \; \; \; u=U_{m} \cdot \cos \left(\omega \cdot t+\varphi _{1} \right), \; \; \; i=I_{m} \cdot \cos \left(\omega \cdot t+\varphi _{2} \right).\)

Наименьший промежуток времени, в течение которого LC -контур возвращается в исходное состояние (к начальному значению заряда данной обкладки), называется периодом свободных (собственных) электромагнитных колебаний в контуре.

Период свободных электромагнитных колебаний в LC -контуре определяется по формуле Томсона:

\(T=2\pi \cdot \sqrt{L\cdot C}, \;\;\; \omega =\dfrac{1}{\sqrt{L\cdot C}}.\)

Сточки зрения механической аналогии, идеальному колебательному контурусоответствует пружинный маятник без трения, а реальному - с трением. Вследствиедействия сил трения колебания пружинного маятника затухают с течением времени.

*Вывод формулы Томсона

Поскольку полная энергия идеального LC -контура, равная сумме энергий электростатического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство

\(W=\dfrac{Q_{m}^{2} }{2C} =\dfrac{L\cdot I_{m}^{2} }{2} =\dfrac{q^{2} }{2C} +\dfrac{L\cdot i^{2} }{2} ={\rm const}.\)

Получим уравнение колебаний в LC -контуре, используя закон сохранения энергии. Продифференцировав выражение для его полной энергии по времени, с учетом того, что

\(W"=0, \;\;\; q"=i, \;\;\; i"=q"",\)

получаем уравнение, описывающее свободные колебания в идеальном контуре:

\(\left(\dfrac{q^{2} }{2C} +\dfrac{L\cdot i^{2} }{2} \right)^{{"} } =\dfrac{q}{C} \cdot q"+L\cdot i\cdot i" = \dfrac{q}{C} \cdot q"+L\cdot q"\cdot q""=0,\)

\(\dfrac{q}{C} +L\cdot q""=0,\; \; \; \; q""+\dfrac{1}{L\cdot C} \cdot q=0.\)

Переписав его в виде:

\(q""+\omega ^{2} \cdot q=0,\)

замечаем, что это - уравнение гармонических колебаний с циклической частотой

\(\omega =\dfrac{1}{\sqrt{L\cdot C} }.\)

Соответственно период рассматриваемых колебаний

\(T=\dfrac{2\pi }{\omega } =2\pi \cdot \sqrt{L\cdot C}.\)

Литература

  1. Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. - Минск: Нар. Асвета, 2009. - С. 39-43.

>> Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний

§ 30 УРАВНЕНИЕ, ОПИСЫВАЮЩЕЕ ПРОЦЕССЫ В КОЛЕБАТЕЛЬНОМ КОНТУРЕ. ПЕРИОД СВОБОДНЫХ ЭЛЕКТРИЧЕСКИХ КОЛЕБАНИЙ

Перейдем теперь к количественной теории процессов в колебательном контуре.

Уравнение, описывающее процессы в колебательном контуре. Рассмотрим колебательный контур, сопротивлением R которого можно пренебречь (рис. 4.6).

Уравнение, описываюндее свободные электрические колебания в контуре, можно получить с помощью закона сохранения энергии. Полная электромагнитная энергия W контура в любой момент времени равна сумме его энергий магнитного и электрического полей:

Эта энергия не меняется с течением времени, если ео противление R контура равно нулю. Значит, производная полной энергии по времени равна нулю. Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

Физический смысл уравнения (4.5) состоит в том, что скорость изменения энергии магнитного поля по модулю равна скорости изменения энергии электрического поля; знак «-» указывает на то, что, когда энергия электрического поля возрастает, энергия магнитного поля убывает (и наоборот).

Вычислив производные в уравнении (4.5), получим 1

Но производная заряда по времени представляет собой силу тока в данный момент времени:

Поэтому уравнение (4.6) можно переписать в следующем виде:

1 Мы вычисляем производные по времени. Поэтому производная (і 2)" равна не просто 2 і , как было бы при вычислении производной но і. Нужно 2 і умножить еще на производную i" силы тока по времени, так как вычисляется производная от сложной функции. То же самое относится к производной (q 2)".

Производная силы тока по времени есть не что иное, как вторая производная заряда по времени, подобно тому как производная скорости по времени (ускорение) есть вторая производная координаты по времени. Подставив в уравнение (4.8) і" = q" и разделив левую и правую части этого уравнения на Li, получим основное уравнение, описывающее свободные электрические колебания в контуре:

Теперь вы в полной мере можете оценить значение тех усилий, которые были затрачены для изучения колебаний шарика на пружине и математического маятника. Ведь уравнение (4.9) ничем, кроме обозначений, не отличается от уравнения (3.11), описывающего колебания шарика на пружине. При замене в уравнении (3.11) х на q, х" на q", k нa 1/C и m нa L мы в точности получим уравнение (4.9). Но уравнение (3.11) было уже решено выше. Поэтому, зная формулу, описывающую колебания пружинного маятника, мы сразу же можем записать формулу для описания электрических колебаний в контуре.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Под электрическими колебаниями понимают периодические изменения заряда, силы тока и напряжения. Простейшая система, в которой возможны свободные электрические колебания, - это так называемый колебательный контур. Это устройство, состоящее из соединенных между собой конденсатора и катушки. Будем полагать, что активное сопротивление катушки отсутствует, в этом случае контур называют идеальным. При сообщении этой системе энергии в ней будут происходить незатухающие гармонические колебания заряда на конденсаторе, напряжения и тока.

Сообщить колебательному контуру энергию можно разными способами. Например, зарядив конденсатор от источника постоянного тока или возбудив ток в катушке индуктивности. В первом случае энергией обладает электрическое поле между обкладками конденсатора. Во втором, энергия заключена в магнитном поле тока, текущего по цепи.

§1 Уравнение колебаний в контуре

Докажем, что при сообщении контуру энергии в нем будут происходить незатухающие гармонические колебания. Для этого необходимо получить дифференциальное уравнение гармонических колебаний вида .

Допустим, конденсатор зарядили и замкнули на катушку. Конденсатор начнет разряжаться, по катушке потечет ток. Согласно второму закону Кирхгофа сумма падений напряжений вдоль замкнутого контура равна сумме ЭДС в этом контуре .

В нашем случае падение напряжения поскольку контур идеальный. Конденсатор в цепи ведет себя как источник тока, в качестве ЭДС выступает разность потенциалов между обкладками конденсатора , где - заряд на конденсаторе, - электроемкость конденсатора. Кроме того, при протекании через катушку изменяющегося тока в ней возникает ЭДС самоиндукции , где - индуктивность катушки, - скорость изменения тока в катушке. Поскольку ЭДС самоиндукции препятствует процессу разрядки конденсатора второй закон Кирхгофа принимает вид

Но ток в контуре – это ток разрядки или зарядки конденсатора, следовательно . Тогда

Дифференциальное уравнение преобразуется к виду



Введя обозначение , получим известное нам дифференциальное уравнение гармонических колебаний .

Это означает, что заряд на конденсаторе в колебательном контуре будет изменяться по гармоническому закону

где - максимальное значение заряда на конденсаторе, - циклическая частота, - начальная фаза колебаний.

Период колебаний заряда . Это выражение носит название формулы Томпсона.

Напряжение на конденсаторе

Ток в цепи

Видим, что кроме заряда на конденсаторе по гармоническому закону будут изменять еще ток в контуре и напряжение на конденсаторе. Напряжение колеблется в одной фазе с зарядом, а сила тока опережает заряд по

фазе на .

Энергия электрического поля конденсатора

Энергия магнитного поля тока

Таким образом, энергии электрического и магнитного полей тоже изменяются по гармоническому закону, но с удвоенной частотой.

Подведем итог

Под электрическими колебаниями следует понимать периодические изменения заряда, напряжения, силы тока, энергии электрического поля, энергии магнитного поля. Эти колебания, как и механические, могут быть как свободными, так и вынужденными, гармоническим и негармоническим. Свободные гармонические электрические колебания возможны в идеальном колебательном контуре.

§2 Процессы, происходящие в колебательном контуре

Мы математически доказали факт существования свободных гармонических колебаний в колебательном контуре. Однако, остается неясным, почему такой процесс возможен. Что является причиной возникновения колебаний в контуре?

В случае свободных механических колебаний такая причина была найдена – это внутренняя сила, возникающая при выведении системы из по- ложения равновесия. Эта сила в любой момент направлена к положению равновесия и пропорциональна координате тела (со знаком «минус»). Попробуем найти аналогичную причину возникновения колебаний в колебательном контуре.

Пусть колебания в контуре возбуждают, зарядив конденсатор и замкнув его на катушку.

В начальный момент времени заряд на конденсаторе максимален. Следовательно, напряжение и энергия электрического поля конденсатора тоже максимальны.

Ток в контуре отсутствует, энергия магнитного поля тока равна нулю.

Первая четверть периода – разрядка конденсатора.

Обкладки конденсатора, имеющие разные потенциалы, соединили проводником, поэтому конденсатор начинает разряжаться через катушку. Заряд, напряжение на конденсаторе и энергия электрического поля убывают.

Ток, появившийся в цепи, нарастает, однако, его нарастанию препятствует ЭДС самоиндукции, возникающая в катушке. Энергия магнитного поля тока увеличивается.

Прошла четверть периода - конденсатор разрядился.

Конденсатор разрядился, напряжение на нем стало равным нулю. Энергия электрического поля в этот момент тоже равна нулю. По закону сохранения энергии исчезнуть она не могла. Энергия поля конденсатора полностью перешла в энергию магнитного поля катушки, которая в этот момент достигает своего максимального значения. Максимален ток в цепи.

Казалось бы, в этот момент ток в цепи должен прекратиться, ибо исчезла причина возникновения тока – электрическое поле. Однако, исчезновению тока опять таки препятствует ЭДС самоиндукции в катушке. Теперь она будет поддерживать убывающий ток, и он будет продолжать течь в прежнем направлении, заряжая конденсатор. Начинается вторая четверть периода.

Вторая четверть периода – перезарядка конденсатора.

Ток, поддерживаемый ЭДС самоиндукции, продолжает течь в прежнем направлении, постепенно уменьшаясь. Этот ток заряжает конденсатор в противоположной полярности. Заряд и напряжение на конденсаторе увеличиваются.

Энергия магнитного поля тока, убывая, переходит в энергию электрического поля конденсатора.

Прошла вторая четверть периода – конденсатор перезарядился.

Конденсатор перезаряжается до тех пор, пока существует ток. Поэтому в тот момент, когда ток прекращается, заряд и напряжение на конденсаторе принимают максимальное значение.

Энергия магнитного поля в этот момент полностью перешла в энергию электрического поля конденсатора.

Ситуация в контуре в этот момент, эквивалентна исходной. Процессы в контуре повторятся, но в обратном направлении. Одно полное колебание в контуре, длящееся в течение периода, закончится, когда система вернется в исходное состояние, то есть когда конденсатор перезарядится в первоначальной полярности.

Нетрудно видеть, что причиной возникновения колебаний в контуре служит явление самоиндукции. ЭДС самоиндукции препятствует изменению тока: она не дает ему мгновенно нарастать и мгновенно исчезать.

Кстати, будет не лишним сопоставить выражения для расчета квазиупругой силы в механической колебательной системе и ЭДС самоиндукции в контуре:

Ранее были получены дифференциальные уравнения для механической и электрической колебательной систем:

Несмотря на принципиальные отличия физических процессов к механических и электрических колебательных системах, явно просматривается математическая тождественность уравнений, описывающих процессы в этих системах. Об этом следует поговорить подробнее.

§3 Аналогия между электрическими и механическими колебаниями

Внимательный анализ дифференциальных уравнений для пружинного маятника и колебательного контура, а так же формул, связывающих величины, характеризующих процессы в этих системах, позволяет выявить, какие величины ведут себя одинаково (таблица 2).

Пружинный маятник Колебательный контур
Координата тела () Заряд на конденсаторе ()
Скорость тела Сила тока в контуре
Потенциальная энергия упруго деформированной пружины Энергия электрического поля конденсатора
Кинетическая энергия груза Энергия магнитного поля катушки с током
Величина, обратная жесткости пружины Емкость конденсатора
Масса груза Индуктивность катушки
Сила упругости ЭДС самоиндукции, равная напряжению на конденсаторе

Таблица 2

Важно не просто формальное сходство между величинами, описывающими процессы колебания маятника и процессы в контуре. Тождественны сами процессы!

Крайние положения маятника эквивалентны состоянию контура, когда заряд на конденсаторе максимален.

Положение равновесия маятника эквивалентно состоянию контура, когда конденсатор разряжен. В этот момент сила упругости обращается в ноль, а в контуре отсутствует напряжение на конденсаторе. Скорость маятника и сила тока в контуре максимальны. Потенциальная энергия упругой деформации пружины и энергия электрического поля конденсатора равны нулю. Энергия системы состоит из кинетической энергии груза или из энергии магнитного поля тока.

Разрядка конденсатора протекает аналогично движению маятника из крайнего положения в положение равновесия. Процесс перезарядки конденсатора тождественен процессу удаления груза из положения равновесия в крайнее положение.

Полная энергия колебательной системы или остается неизменной с течением времени.

Подобная аналогия может быть прослежена не только между пружинным маятником и колебательным контуром. Всеобщи закономерности свободных колебаний любой природы! Эти закономерности, проиллюстрированные на примере двух колебательных систем (пружинном маятнике и колебательном контуре) не просто можно, а нужно видеть в колебаниях любой системы.

В принципе, можно решить задачу о любом колебательном процессе, заменив его колебаниями мятника. Для этого достаточно грамотно построить эквивалентную механическую систему, решить механическую задачу и провести замену величин в окончательном результате. Например, нужно найти период колебаний в контуре, содержащем конденсатор и две катушки, соединенные параллельно.

Колебательный контур содержит один конденсатор и две катушки. Поскольку катушка ведет себя как груз пружинного маятника, а конденсатор как пружина, то эквивалентная механическая система должна содержать одну пружину и два груза. Вся проблема в том, как грузы прикреплены к пружине. Возможны два случая: один конец пружины закреплен, а к свободному концу прикреплен один груз, второй находится на первом или грузы прикреплены к разным концам пружины.

При параллельном соединении катушек разной индуктивности токи по ним текут разные. Следовательно, скорости грузов в тождественной механической системе тоже должны быть разными. Очевидно, это возможно лишь во втором случае.

Период этой колебательной системы нами уже найден. Он равен . Заменяя массы грузов на индуктивности катушек, а величину, обратную жесткости пружины, на емкость конденсатора, получаем .

§4 Колебательный контур с источником постоянного тока

Рассмотрим колебательный контур, содержащий источник постоянного тока. Пусть конденсатор первоначально не заряжен. Что будет происходить в системе после замыкания ключа К? Будут ли в этом случае наблюдаться колебания и какова их частота и амплитуда?

Очевидно, после замыкания ключа конденсатор начнет заряжаться. Записываем второй закон Кирхгофа:

Ток в контуре – это ток зарядки конденсатора, следовательно . Тогда . Дифференциальное уравнение преобразуется к виду

*Решаем уравнение заменой переменных.

Обозначим . Дифференцируем дважды и с учетом того, что , получаем . Дифференциальное уравнение приобретает вид

Это дифференциальное уравнение гармонических колебаний, его решением является функция

где - циклическая частота, константы интегрирования и находятся из начальных условий.

Заряд на конденсаторе меняется по закону

Сразу после замыкания ключа заряд на конденсаторе равен нулю и ток в контуре отсутствует . С учетом начальных условий получаем систему уравнений:

Решая систему, получаем и . После замыкания ключа заряд на конденсаторе изменяется по закону .

Нетрудно видеть, что в контуре происходят гармонические колебания. Наличие в контуре источника постоянного тока не повлияло на частоту колебаний, она осталась равной . Изменилось «положение равновесия» - в тот момент, когда ток в цепи максимален, конденсатор заряжен. Амплитуда колебаний заряда на конденсаторе равна Cε.

Этот же результат можно получить проще, используя аналогию между колебаниями в контуре и колебаниями пружинного маятника. Источник постоянного тока эквивалентен постоянному силовому полю, в которое помещен пружинный маятник, например, полю тяготения. Отсутствие заряда на конденсаторе в момент замыкания цепи тождественно отсутствию деформации пружины в момент приведения маятника в колебательное движение.

В постоянном силовом поле период колебаний пружинного маятника не изменяется. Период колебаний в контуре ведет себя так же – он остается неизменным при введении в контур источника постоянного тока .

В положении равновесия, когда скорость груза максимальна, пружина деформирована:

Когда ток в колебательном контуре максимален . Второй закон Кирхгофа запишется следующим образом

В этот момент заряд на конденсаторе равен Этот же результат можно было получить на основании выражения (*), выполнив замену

§5 Примеры решения задач

Задача 1 Закон сохранения энергии

L = 0,5 мкГн и конденсатора емкостью С = 20 пФ происходят электрические колебания. Чему равно максимальное напряжение на конденсаторе, если амплитуда тока в контуре 1 мА? Активное сопротивление катушки пренебрежимо мало.

Решение:

(1)

2 В тот момент, когда напряжение на конденсаторе максимально (максимален заряд на конденсаторе), ток в цепи отсутствует. Полная энергия системы состоит только из энергии электрического поля конденсатора

(2)

3 В момент, когда ток в цепи максимален, конденсатор полностью разряжен. Полная энергия системы состоит только из энергии магнитного поля катушки

(3)

4 На основании выражений (1), (2), (3) получаем равенство . Максимальное напряжение на конденсаторе равно

Задача 2 Закон сохранения энергии

В колебательном контуре, состоящем из катушки индуктивностью L и конденсатора емкостью С, происходят электрические колебания с периодом Т = 1 мкс. Максимальное значение заряда . Чему равен ток в контуре в тот момент, когда заряд на конденсаторе равен ? Активное сопротивление катушки пренебрежимо мало.

Решение:

1 Поскольку активным сопротивлением катушки можно пренебречь, полная энергия системы, состоящая из энергии электрического поля конденсатора и энергии магнитного поля катушки, остается неизменной с течением времени:

(1)

2 В тот момент, когда заряд на конденсаторе максимален, ток в цепи отсутствует. Полная энергия системы состоит только из энергии электрического поля конденсатора

(2)

3 На основании (1) и (2) получаем равенство . Ток в контуре равен .

4 Период колебаний в контуре определяется формулой Томсона . Отсюда . Тогда для тока в контуре получаем

Задача 3 Колебательный контур с двумя параллельно соединенными конденсаторами

В колебательном контуре, состоящем из катушки индуктивностью L и конденсатора емкостью С, происходят электрические колебания с амплитудой заряда . В тот момент, когда заряд на конденсаторе максимален, замыкают ключ К. Каким станет период колебаний в контуре после замыкания ключа? Чему равна амплитуда тока в контуре после замыкания ключ? Омическим сопротивлением контура пренебречь.

Решение:

1 Замыкание ключа приводит к появлению в контуре еще одного конденсатора, подключенного параллельно первому. Общая емкость двух параллельно соединенных конденсаторов равна .

Период колебаний в контуре зависит только от его параметров и не зависит от того, как в системе возбудили колебания и какую энергию сооб- щили системе для этого. Согласно формуле Томсона .

2 Для нахождения амплитуды тока выясним, какие процессы происходят в контуре после замыкания ключа.

Второй конденсатор подключили в тот момент, когда заряд на первом конденсаторе был максимален, следовательно, ток в контуре отсутствовал.

Контурный конденсатор должен начать разряжаться. Ток разрядки, дойдя до узла, должен бы разделиться на две части. Однако, в ветви с катушкой, возникает ЭДС самоиндукции, препятствующая нарастанию тока разрядки. По этой причине весь ток разрядки потечет в ветвь с конденсатором, омическое сопротивление которой равно нулю. Ток прекратится, как только сравняются напряжения на конденсаторах, при этом первоначальный заряд конденсатора перераспределится между двумя конденсаторами. Время перераспределения заряда между двумя конденсаторами ничтожно мало вследствие отсутствия омического сопротивления в ветвях с конденсаторами. За это время ток в ветви с катушкой возникнуть не успеет. Колебания в новой системе продолжатся уже после перераспределения заряда между конденсаторами.

Важно понять, что в процессе перераспределения заряда между двумя конденсаторами энергия системы не сохраняется! До замыкания ключа энергией обладал один конденсатор, контурный:

После перераспределения заряда энергией обладает батарея конденсаторов:

Нетрудно видеть, что энергия системы уменьшилась!

3 Новую амплитуду тока найдем, воспользовавшись законом сохранения энергии. В процессе колебаний энергия батареи конденсаторов переходит в энергию магнитного поля тока:

Обратите внимание, закон сохранения энергии начинает «работать» только после завершения перераспределения заряда между конденсаторами.

Задача 4 Колебательный контур с двумя последовательно соединенными конденсаторами

Колебательный контур состоит из катушки индуктивностью L и двух последовательно соединенных конденсаторов С и 4С. Конденсатор емкостью С заряжен до напряжения , конденсатор емкостью 4С не заряжен. После замыкания ключа в контуре начинаются колебания. Чему равен период этих колебаний? Определите амплитуду тока, максимальное и минимальное значения напряжения на каждом конденсаторе.

Решение:

1 В момент, когда ток в цепи максимален, ЭДС самоиндукции в катушке отсутствует . Записываем для этого момента второй закон Кирхгофа

Видим, что в тот момент, когда ток в контуре максимален, конденсаторы заряжены до одинакового напряжения, но в противоположной полярности:

2 До замыкания ключа полная энергия системы состояла только из энергии электрического поля конденсатора С:

В момент, когда ток в цепи максимален, энергия системы складывается из энергии магнитного поля тока и энергии двух заряженных до одинакового напряжения конденсаторов:

Согласно закону сохранения энергии

Для нахождения напряжения на конденсаторах воспользуемся законом сохранения заряда – заряд нижней обкладки конденсатора С частично перешел на верхнюю обкладку конденсатора 4С:

Подставляем найденное значение напряжения в закон сохранения энергии и находим амплитуду тока в контуре:

3 Найдем, в каких пределах изменяется напряжение на конденсаторах в процессе колебаний.

Понятно, что в момент замыкания цепи на конденсаторе С было максимальное напряжение . Конденсатор 4С был не заряжен, следовательно, .

После замыкания ключа конденсатор С начинает разряжаться, а конденсатор емкостью 4С – заряжаться. Процесс разрядки первого и зарядки второго конденсаторов заканчивается, как только прекращается ток в цепи. Это произойдет через половину периода. Согласно законам сохранения энергии и электрического заряда:

Решая систему, находим:

.

Знак «минус» означает, что через полпериода конденсатор емкости С заряжен в полярности, обратной первоначальной.

Задача 5 Колебательный контур с двумя последовательно соединенным катушками

Колебательный контур состоит из конденсатора емкостью С и двух катушек индуктивностью L 1 и L 2 . В тот момент, когда ток в контуре принял максимальное значение , в первую катушку быстро (по сравнению с периодом колебаний) вносят железный сердечник, что приводи к увеличению ее индуктивности в μ раз. Чему равна амплитуда напряжения в процессе дальнейших колебаний в контуре?

Решение:

1 При быстром внесении сердечника в катушку должен сохраниться магнитный поток (явление электромагнитной индукции). Поэтому быстрое изменение индуктивности одной из катушек приведет к быстрому изменению тока в контуре.

2 За время внесения сердечника в катушку заряд на конденсаторе измениться не успел, он остался незаряженным (сердечник вносили в тот момент, когда ток в цепи был максимален). Через четверть периода энергия магнитного поля тока перейдет в энергию заряженного конденсатора:

Подставляем в полученное выражение значение тока I и находим амплитуду напряжения на конденсаторе:

Задача 6 Колебательный контур с двумя параллельно соединенным катушками

Катушки индуктивности L 1 и L 2 подключены через ключи К1 и К2 к конденсатору емкостью С. В начальный момент оба ключа разомкнуты, а конденсатор заряжен до разности потенциалов . Сначала замыкают ключ К1 и, когда напряжение на конденсаторе станет равным нулю, замыкают К2. Определите максимальное напряжение на конденсаторе после замыкания К2. Сопротивлениями катушек пренебречь.

Решение:

1 При разомкнутом ключе К2 в контуре, состоящем из конденсатора и первой катушки, происходят колебания. К моменту замыкания К2 энергия конденсатора перешла в энергию магнитного поля тока в первой катушке :

2 После замыкания К2 в колебательном контуре оказываются две катушки, соединенные параллельно.

Ток в первой катушке не может прекратиться вследствие явления самоиндукции. В узле он делится: одна часть тока идет во вторую катушку, а другая заряжает конденсатор .

3 Напряжение на конденсаторе станет максимальным, когда прекратится ток I , заряжающий конденсатор. Очевидно, что в этот момент токи в катушках сравняются .

: На грузы действуют одинаковые по модулю силы – оба груза прикреплены к пружине Сразу после замыкания К2 в первой катушке существовал ток В начальный момент первый груз имел скорость Сразу после замыкания К2 ток во второй катушке отсутствовал В начальный момент второй груз покоился Каково максимальное значения напряжения на конденсаторе? Чему равна максимальная сила упругости, возникающая в пружине в процессе колебаний?

Маятник двигается поступательно со скоростью центра масс и совершает колебания относительно центра масс.

Сила упругости максимальна в момент максимальной деформации пружины. Очевидно, в этот момент относительная скорость грузов становится равной нулю, а относительно стола грузы двигаются со скоростью центра масс. Записываем закон сохранения энергии:

Решая систему, находим

Производим замену


и получаем для максимального напряжения найденное ранее значение

§6 Задания для самостоятельного решения

Упражнение1 Расчет периода и частоты собственных колебаний

1 В колебательный контур входят катушка переменной индуктивности, изменяющаяся в пределах L 1 = 0,5 мкГн до L 2 = 10 мкГн, и конденсатор, емкость которого может изменяться в пределах от С 1 = 10 пФ до

С 2 =500 пФ. Какой диапазон частот можно охватить настройкой этого контура?

2 Во сколько раз изменится частота собственных колебаний в контуре, если его индуктивность увеличить в 10 раз, а емкость уменьшить в 2,5 раза?

3 Колебательный контур с конденсатором емкость 1 мкФ настроен на частоту 400 Гц. Если подключить к нему параллельно второй конденсатор, то частота колебаний в контуре становится равной 200 Гц. Определите емкость второго конденсатора.

4 Колебательный контур состоит из катушки и конденсатора. Во сколько раз изменится частота собственных колебаний в контуре, если в контур последовательно включить второй конденсатор, емкость которого в 3 раза меньше емкости первого?

5 Определите период колебаний контура, в состав которого входит катушка (без сердечника) длины в = 50 см м площади поперечного сечения

S = 3 cм 2 , имеющая N = 1000 витков, и конденсатора емкости С = 0,5 мкФ.

6 В состав колебательного контура входит катушка индуктивности L = 1,0 мкГн и воздушный конденсатор, площади пластин которого S = 100 cм 2 . Контур настроен на частоту 30 МГц. Определите расстояние между пластинами. Активное сопротивление контура пренебрежимо мало.

Зарядим конденсатор от батареи и подключим его к катушке. В созданном нами контуре сразу же начнутся электромагнитные колебания (рис. 46). Разрядный ток конденсатора, проходя по катушке, создает вокруг нее магнитное доле. Это значит, что во время разряда конденсатора энергия его электрического поля переходит в энергию магнитного поля катушки, подобно тому как при колебаниях маятника или струны потенциальная энергия переходит в кинетическую.

По мере того как конденсатор разряжается, напряжение на его обкладках падает, а ток в контуре растет, и к тому моменту, когда конденсатор полностью разрядится, ток будет максимальным (амплитуда тока). Но и после окончания разряда конденсатора ток не прекратится - убывающее магнитное поле катушки будет поддерживать движение зарядов, и они вновь начнут накапливаться на обкладках конденсатора. При этом ток в контуре уменьшается, а напряжение на конденсаторе растет. Этот процесс обратного перехода энергии магнитного поля катушки в энергию электрического поля конденсатора несколько напоминает то, что происходит, когда маятник, проскочив среднюю точку, поднимается вверх.

К моменту, когда ток в контуре прекратится и магнитное поле катушки исчезнет, конденсатор окажется заряженным до максимального (амплитудного) напряжения обратной полярности. Последнее означает,что на той обкладке, где раньше были положительные заряды, теперь будут отрицательные, и наоборот. Поэтому, когда вновь начнется разряд конденсатора (а это произойдет немедленно после того, как он полностью зарядится), то в цепи пойдет ток обратного направления.

Периодически повторяющийся обмен энергией между конденсатором и катушкой и представляет собой электромагнитные колебания в контуре. В процессе этих колебаний в контуре протекает переменный ток (то есть изменяется не только величина, но и направление тока), а на конденсаторе действует переменное напряжение (то есть изменяется не только величина напряжения, но и полярность зарядов, накапливающихся на обкладках). Одно из направлений напряжения тока условно называют положительным, а противоположное направление - отрицательным.

Наблюдая за изменениями напряжения или тока, можно построить график электромагнитных колебаний в контуре (рис. 46), подобно тому как мы строили график механических колебаний маятника (). На графике значения положительного тока или напряжения откладывают выше горизонтальной оси, а отрицательного - ниже этой оси. Ту половину периода, когда ток протекает в положительном направлении, часто называют положительным полупериодом тока, а другую половину - отрицательным полупериодом тока. Можно говорить также и о положительном и отрицательном полупериоде напряжения.

Хочется еще раз подчеркнуть, что слова «положительный» и «отрицательный» мы используем совершенно условно, лишь для того чтобы отличить два противоположных направления тока.

Электромагнитные колебания, с которыми мы познакомились, называют свободными или собственными колебаниями. Они возникают всякий раз, когда мы передаем контуру некоторый запас энергии, а затем даем возможность конденсатору и катушке свободно обмениваться этой энергией. Частота свободных колебаний (то есть частота переменного напряжения и тока в контуре) зависит от того, насколько быстро конденсатор и катушка могут накапливать и отдавать энергию. Это, в свою очередь, зависит от индуктивности Lк и емкости С к контура, подобно тому, как частота колебаний струны зависит от ее массы и упругости. Чем больше индуктивность L катушки, тем больше времени нужно, чтобы создать в ней магнитное поле, и тем дольше это магнитное поле сможет поддерживать ток в цепи. Чем больше емкость С конденсатора, тем дольше он будет разряжаться и тем больше времени понадобится, чтобы этот конденсатор перезарядить. Таким образом, чем больше Lк и С к контура, тем медленнее происходят в нем электромагнитные колебания, тем ниже их частота. Зависимость частоты f о свободных колебаний от L к и С к контура выражается простой формулой, которая является одной из основных формул радиотехники:

Смысл этой формулы предельно прост: для того чтобы увеличить частоту собственных колебаний f 0 , нужно уменьшить индуктивность L к или емкость С к контура; чтобы уменьшить f 0 , индуктивность и емкость нужно увеличить (рис 47).

Из формулы для частоты можно легко вывести (мы это уже делали с формулой закона Ома) расчетные формулы для определения одного из параметров контура L к или С к при заданной частоте f0 и известном втором параметре. Удобные для практических расчетов формулы приведены на листах 73, 74 и 75.

Свободные колебания в контуре.

Рассмотренные в предыдущих разделах цепи переменного тока наводят на мысль, что пара элементов − конденсатор и катушка индуктивности образуют своеобразную колебательную систему. Сейчас мы покажем, что это действительно так, в цепи состоящей только из этих элементов (рис. 669) возможны даже свободные колебания, то есть без внешнего источника ЭДС.

рис. 669
 Поэтому цепь (или часть другой цепи), состоящая из конденсатора и катушки индуктивности называется колебательным контуром .
 Пусть конденсатор зарядили до заряда qo и затем подключили к нему катушку индуктивности. Такую процедуру легко осуществить с помощью цепи, схема которой показана на рис. 670: сначала ключ замыкают в положении 1 , при этом конденсатор заряжается до напряжения, равного ЭДС источника, после чего ключ перебрасывают в положения 2 , после чего начинается разрядка конденсатора через катушку.

рис. 670
 Для определения зависимости заряда конденсатора от времени q(t) применим закон Ома, согласно которому напряжение на конденсаторе U C = q/C равно ЭДС самоиндукции, возникающей в катушке

здесь, «штрих» означает производную по времени.
 Таким образом, оказывается справедливым уравнение

 В этом уравнении содержится две неизвестных функции − зависимости от времени заряда q(t) и силы тока I(t) , поэтому его решить нельзя. Однако сила тока является производной от заряда конденсатора q / (t) = I(t) , поэтому производная от силы тока является второй производной от заряда

 С учетом этого соотношения, перепишем уравнение (1) в виде

 Поразительно, но это уравнение полностью совпадает с хорошо изученным нами уравнением гармонических колебаний (вторая производная от неизвестной функции пропорциональна самой этой функции с отрицательным коэффициентом пропорциональности x // = −ω o 2 x )! Следовательно, решением этого уравнения будет гармоническая функция

с круговой частотой

 Эта формула определяет собственную частоту колебательного контура . Соответственно период колебаний заряда конденсатора (и силы тока в контуре) равен

 Полученное выражение для периода колебаний называется формулой Дж. Томпсона .
 Как обычно, для определения произвольных параметров A , φ в общем решении (4) необходимо задать начальные условия − заряд и силу тока в начальный момент времени. В частности, для рассмотренного примера цепи рис. 670, начальные условия имеют вид: при t = 0 , q = q o , I = 0 , поэтому зависимость заряда конденсатора от времени будет описываться функцией

а сила тока изменяется со временем по закону

 Приведенное рассмотрение колебательного контура является приближенным − любой реальный контур обладает активным сопротивлением (соединительных проводов и обмотки катушки).

рис. 671
 Поэтому в уравнении (1) следует учесть падение напряжения на этом активном сопротивлении, поэтому это уравнение приобретет вид

который с учетом связи между зарядом и силой тока, преобразуется к форме

 Это уравнение нам также знакомо – это уравнение затухающих колебаний

причем коэффициент затухания, как и следовало ожидать, пропорционален активному сопротивлению цепи β = R/L .
 Процессы, происходящие в колебательном контуре, могут быть также описаны и с помощью закона сохранения энергии. Если пренебречь активным сопротивлением контура, то сумма энергий электрического поля конденсатора и магнитного поля катушки остается постоянной, что выражается уравнением

которое также является уравнением гармонических колебаний с частотой, определяемой формулой (5). По свое форме это уравнение также совпадает уравнениями, следующими из закона сохранения энергии при механических колебаниях. Так как, уравнения, описывающие колебания электрического заряда конденсатора, аналогичны уравнениям, описывающим механические колебания, то можно провести аналогию между процессами, протекающими в колебательном контуре, и процессами в любой механической системе. На рис. 672 такая аналогия проведена для колебаний математического маятника. В этом случае аналогами являются «заряд конденсатора q(t) − угол отклонения маятника φ(t) » и «сила тока I(t) = q / (t) − скорость движения маятника V(t) ».


рис. 672
 Пользуясь этой аналогией, качественно опишем процесс колебаний заряда и электрического тока в контуре. В начальный момент времени конденсатор заряжен, сила электрического тока равна нулю, вся энергия заключена в энергии электрического поля конденсатора (что аналогично максимальному отклонения маятника от положения равновесия). Затем конденсатор начинает разряжаться, сила тока возрастает, при этом в катушке возникает ЭДС самоиндукции, которая препятствует возрастанию тока; энергия конденсатора уменьшается, переходя в энергию магнитного поля катушки (аналогия – маятник движется к нижней точки с возрастанием скорости движения). Когда заряд на конденсаторе становится равным нулю, сила тока достигает максимального значения, при этом вся энергия превращается в энергию магнитного поля (маятник достиг нижней точки, скорость его максимальна). Затем магнитное поле начинает убывать, при этом ЭДС самоиндукции поддерживает ток в прежнем направлении, при этом конденсатор начинает заряжаться, причем знаки зарядов на обкладках конденсатора противоположны начальному распределению (аналог − маятник движется к противоположному начальному максимальному отклонению). Затем ток в цепи прекращается, при этом заряд конденсатора становится опять максимальным, но противоположным по знаку (маятник достиг максимального отклонения), после чего процесс повторятся в противоположном направлении.



Вверх