Как обозначается абсолютная погрешность. Абсолютная погрешность

Результат измерений физической величины всегда отличается от истинного значения на некоторую величину, которая называется погрешностью

КЛАССИФИКАЦИЯ:

1. По способу выражения: абсолютные, приведенные и относительные

2. По источнику возникновения: методические и инструментальные.

3. По условиям и причинам возникновения: основные и дополнительные

4. По характеру изменения: систематические и случайные.

5. По зависимости от входной измеряемой величины: аддитивные и мультипликативные

6. По зависимости от инерционности: статические и динамические.

13. Абсолютная, относительная и приведенная погрешности.

Абсолютная погреш­ность - это разность между измеренным и дейст­вительным значениями измеряемой величины:

где А изм, А - измеряемое и действительное значения; ΔА - абсолютная погрешность.

Абсолютную погрешность выражают в единицах измеряемой величины. Абсолютную погрешность, взятую с обратным знаком, называют поправкой.

Относительная погрешность р равна отношению абсолютной погрешности ΔА к действительному значению измеряемой величины и выражается в про­центах:

Приведенная погрешность измерительного прибо­ра - это отношение абсолютной погрешности к но­минальному значению. Номинальное значение для прибора с односторонней шкалой равно верхнему пределу измерения, для прибора с двусторонней шкалой (с нулем посередине) - арифметической сум­ме верхних пределов измерения:

пр. ном.

14. Методическая, инструментальная, систематическая и случайная погрешности.

Погрешность метода обусловлена несовершенством применяемого метода измерения, неточностью формул и математических зависимостей, описывающий данный метод измерения, а также влиянием средства измерения на объект свойства которого изменяются.

Инструментальная погрешность (погрешность инструмента) обусловлена особенностью конструкции измерительного устройства, неточностью градуировки, шкалы, а также неправильностью установки измерительного устройства.

Инструментальная погрешность, как правило, указывается в паспорте на средство измерения и может быть оценена в числовом выражении.

Систематическая погрешность - постоянная или закономерно изменяющаяся погрешность при повторных измерениях одной и той же величины в одинаковых условиях измерения. Например, погрешность, возникающая при измерении сопротивления ампервольтметром, обусловленная разрядом батареи питания.

Случайная погрешность - погрешность измерения, характер изменения которой при повторных измерениях одной и той же величины в одинаковых условиях случайный. Например, погрешность отсчета при нескольких повторных измерениях.

Причиной случайной погрешности является одновременной действие многих случайных факторов, каждый из которых в отдельности мало влияет.

Случайная погрешность может быть оценена и частично снижена путём правильной обработки методами математической статистики, а также методами вероятности.

15. Основная и дополнительная, статическая и динамическая погрешности.

Основная погрешность - погрешность, возникающая в нормальных условиях применения средства измерения (температура, влажность, напряжение питания и др.), которые нормируются и указываются в стандартах или технических условиях.

Дополнительная погрешность обуславливается отклонением одной или нескольких влияющих величин от нормального значения. Например, изменение температуры окружающей среды, изменение влажности, колебания напряжения питающей сети. Значение дополнительной погрешности нормируется и указывается в технической документации на средства измерения.

Статическая погрешность - погрешность при измерении постоянной по времени величины. Например, погрешность измерения неизменного за время измерения напряжения постоянного тока.

Динамическая погрешность - погрешность измерения изменяющейся во времени величины. Например, погрешность измерения коммутируемого напряжения постоянного тока, обусловленная переходными процессами при коммутации, а также ограниченным быстродействием измерительного прибора.

Абсолютной погрешностью измерения называется величина, определяемая разницей между результатом измерения x и истинным значением измеряемой величины x 0:

Δx = |x - x 0 |.

Величина δ, равная отношению абсолютной погрешности измерения к результату измерения, называется относительной погрешностью:

Пример 2.1. Приближённым значением числа π является 3.14. Тогда погрешность его равна 0.00159. Абсолютную погрешность можно считать равной 0.0016, а относительную погрешность равной 0.0016/3.14 = 0.00051 = 0.051 %.

Значащие цифры. Если абсолютная погрешность величины a не превышает одной единицы разряда последней цифры числа a, то говорят, что у числа все знаки верные. Приближённые числа следует записывать, сохраняя только верные знаки. Если, например, абсолютная погрешность числа 52400 равна 100, то это число должно быть записано, например, в виде 524·10 2 или 0.524·10 5 . Оценить погрешность приближённого числа можно, указав, сколько верных значащих цифр оно содержит. При подсчёте значащих цифр не считаются нули с левой стороны числа.

Например, число 0.0283 имеет три верных значащих цифры, а 2.5400 - пять верных значащих цифр.

Правила округления чисел . Если приближённое число содержит лишние (или неверные) знаки, то его следует округлить. При округлении возникает дополнительная погрешность, не превышающая половины единицы разряда последней значащей цифры (d ) округлённого числа. При округлении сохраняются только верные знаки; лишние знаки отбрасываются, причём если первая отбрасываемая цифра больше или равна d /2, то последняя сохраняемая цифра увеличивается на единицу.

Лишние цифры в целых числах заменяются нулями, а в десятичных дробях отбрасываются (как и лишние нули). Например, если погрешность измерения 0.001 мм, то результат 1.07005 округляется до 1.070. Если первая из изменяемых нулями и отбра-сываемых цифр меньше 5, остающиеся цифры не изменяются. Например, число 148935 с точностью измерения 50 имеет округление 148900. Если первая из заменяемых нулями или отбрасываемых цифр равна 5, а за ней не следует никаких цифр или идут нули, то округление производится до ближайшего чётного числа. Например, число 123.50 округляется до 124. Если первая из заменяемых нулями или отбрасываемых цифр больше 5 или равна 5, но за ней следует значащая цифра, то последняя остающаяся цифра увеличивается на единицу. Например, число 6783.6 округляется до 6784.

Пример 2.2. При округлении числа 1284 до 1300 абсолютная погрешность составляет 1300 - 1284 = 16, а при округлении до 1280 абсолютная погрешность составляет 1280 - 1284 = 4.


Пример 2.3. При округлении числа 197 до 200 абсолютная погрешность составляет 200 - 197 = 3. Относительная погрешность равна 3/197 ≈ 0.01523 или приближённо 3/200 ≈ 1.5 %.

Пример 2.4. Продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая - 50 г. Взвешивание дало 3600 г. Это число - приближённое. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превышает 50/3600 = 1.4 %.

Погрешности решения задачи на PC

В качестве основных источников погрешности обычно рассматривают три вида ошибок. Это так называемые ошибки усечения, ошибки округления и ошибки распространения. Например, при использовании итерационных методов поиска корней нелинейных уравнений результаты являются приближёнными в отличие от прямых методов, дающих точное решение.

Ошибки усечения

Этот вид ошибок связан с погрешностью, заложенной в самой задаче. Он может быть обусловлен неточностью определения исходных данных. Например, если в условии задачи заданы какие-либо размеры, то на практике для реальных объектов эти размеры известны всегда с некоторой точностью. То же самое касается любых других физических параметров. Сюда же можно отнести неточность расчётных формул и входящих в них числовых коэффициентов.

Ошибки распространения

Данный вид ошибок связан с применением того или иного способа решения задачи. В ходе вычислений неизбежно происходит накопление или, иначе говоря, распространение ошибки. Помимо того, что сами исходные данные не являются точными, новая погрешность возникает при их перемножении, сложении и т. п. Накопление ошибки зависит от характера и количества арифметических действий, используемых в расчёте.

Ошибки округления

Это тип ошибок связан с тем, что истинное значение числа не всегда точно сохраняется компьютером. При сохранении вещественного числа в памяти компьютера оно записывается в виде мантиссы и порядка примерно так же, как отображается число на калькуляторе.

Измерения называются прямыми, если значения величин определяются приборами непосредственно (например, измерение длины линейкой, определение времени секундомером и т. д.). Измерения называютсякосвенными , если значение измеряемой величины определяется посредством прямых измерений других величин, которые связаны с измеряемой определенной зависимостью.

Случайные погрешности при прямых измерениях

Абсолютная и относительная погрешность. Пусть проведеноN измерений одной и той же величиныx в отсутствии систематической погрешности. Отдельные результаты измерений имеют вид:x 1 ,x 2 , …,x N . В качестве наилучшего выбирается среднее значение измеренной величины:

Абсолютной погрешностью единичного измерения называется разность вида:

.

Среднее значение абсолютной погрешности N единичных измерений:

(2)

называется средней абсолютной погрешностью .

Относительной погрешностью называется отношение средней абсолютной погрешности к среднему значению измеряемой величины:

. (3)

Приборные погрешности при прямых измерениях

    Если нет особых указаний, погрешность прибора равна половине его цены деления (линейка, мензурка).

    Погрешность приборов, снабженных нониусом, равна цене деления нониуса (микрометр – 0,01 мм, штангенциркуль – 0,1 мм).

    Погрешность табличных величин равна половине единицы последнего разряда (пять единиц следующего порядка за последней значащей цифрой).

    Погрешность электроизмерительных приборов вычисляется согласно классу точности С , указанному на шкале прибора:

Например:
и
,

где U max и I max – предел измерения прибора.

    Погрешность приборов с цифровой индикацией равна единице последнего разряда индикации.

После оценки случайной и приборной погрешностей в расчет принимается та, значение которой больше.

Вычисление погрешностей при косвенных измерениях

Большинство измерений являются косвенными. В этом случае искомая величина Х является функцией нескольких переменных а, b , c , значения которых можно найти прямыми измерениями: Х = f(a , b , c …).

Среднее арифметическое результата косвенных измерений будет равно:

X = f(a ,b ,c …).

Одним из способов вычисления погрешности является способ дифференцирования натурального логарифма функции Х = f(a , b , c …). Если, например, искомая величина Х определяется соотношением Х = , то после логарифмирования получаем:lnX = lna + lnb + ln(c + d ).

Дифференциал этого выражения имеет вид:

.

Применительно к вычислению приближенных значений его можно записать для относительной погрешности в виде:

 =
. (4)

Абсолютная погрешность при этом рассчитывается по формуле:

Х = Х(5)

Таким образом, расчет погрешностей и вычисление результата при косвенных измерениях производят в следующем порядке:

1) Проводят измерения всех величин, входящих в исходную формулу для вычисления конечного результата.

2) Вычисляют средние арифметические значения каждой измеряемой величины и их абсолютные погрешности.

3) Подставляют в исходную формулу средние значения всех измеренных величин и вычисляют среднее значение искомой величины:

X = f(a ,b ,c …).

4) Логарифмируют исходную формулу Х = f(a , b , c …) и записывают выражение для относительной погрешности в виде формулы (4).

5) Рассчитывают относительную погрешность  = .

6) Рассчитывают абсолютную погрешность результата по формуле (5).

7) Окончательный результат записывают в виде:

Х = Х ср Х

Абсолютные и относительные погрешности простейших функций приведены в таблице:

Абсолютная

погрешность

Относительная

погрешность

a+ b

a+ b

Термины ошибка измерения и погрешность измерения используются как синонимы.) Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов . При этом за истинное значение принимается среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность . Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2.8±0.1 c. означает, что истинное значение величины T лежит в интервале от 2.7 с. до 2.9 с. некоторой оговоренной вероятностью (см. доверительный интервал , доверительная вероятность, стандартная ошибка).

В 2006 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений».

Определение погрешности

В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

  • Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:
  • Средняя квадратическая погрешность:
  • Средняя квадратическая погрешность среднего арифметического:

Классификация погрешностей

По форме представления

  • Абсолютная погрешность - ΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины X m e a s . При этом равенство:

ΔX = | X t r u e X m e a s | ,

где X t r u e - истинное значение, а X m e a s - измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина X m e a s распределена по нормальному закону , то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение . Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

  • Относительная погрешность - отношение абсолютной погрешности к тому значению, которое принимается за истинное:

Относительная погрешность является безразмерной величиной, либо измеряется в процентах .

  • Приведенная погрешность - относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

где X n - нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

Если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то X n определяется равным верхнему пределу измерений;
- если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведенная погрешность - безразмерная величина (может измеряться в процентах).

По причине возникновения

  • Инструментальные / приборные погрешности - погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.
  • Методические погрешности - погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
  • Субъективные / операторные / личные погрешности - погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.

В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.

Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.

Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведенных основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где n = 1; 0; -1; -2 и т.д.

По характеру проявления

  • Случайная погрешность - погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т.п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).
  • Систематическая погрешность - погрешность, изменяющаяся во времени по определенному закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т.п.), неучтёнными экспериментатором.
  • Прогрессирующая (дрейфовая) погрешность - непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
  • Грубая погрешность (промах) - погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора, если произошло замыкание в электрической цепи).

Допустим, что точная ширина стола – А=384 мм, а мы, измерив ее, получили а=381 мм. Модуль разности между точным значением измеряемой величины и ее приближенным значением называется абсолютной погрешностью . В данном примере абсолютная погрешность 3 мм. Но на практике мы никогда не знаем точного значения измеряемой величины, поэтому не можем точно знать абсолютную погрешность.

Но обычно мы знаем точность измерительных приборов, опыт наблюдателя, производящего измерения и т.д. Это дает возможность составить представление об абсолютной погрешности измерения. Если, например, мы рулеткой измеряем длину комнаты, то нам нетрудно учесть метры и сантиметры, но вряд ли мы сможем учесть миллиметры. Да в этом и нет надобности. Поэтому мы сознательно допускаем ошибку в пределах 1 см. абсолютная погрешность длины комнаты меньше 1 см. Измеряя длину какого-либо отрезка миллиметровой линейкой, мы имеем право утверждать, что погрешность измерения не превышает 1 мм.

Абсолютная погрешность e а приближенного числа а дает возможность установить границы, в которых лежит точное число А:

Абсолютная погрешность не является достаточным показателем качества измерения и не характеризует точность вычислений или измерений. Если известно, что, измерив некоторую длину, мы получили абсолютную погрешность в 1 см, то никаких заключений о том, хорошо или плохо мы измеряли, сделать нельзя. Если мы измеряли длину карандаша в 15 см и ошиблись на 1 см, наше измерение никуда не годится. Если же мы измеряли 20-метровый коридор и ошиблись всего на 1 см, то наше измерение – образец точности. Важна не только сама абсолютная погрешность, но и та доля, которую она составляет от измеренной величины . В первом примере абс. погрешность 1 см составляет 1/15 долю измеряемой величины или 7%, во втором – 1/2000 или 0.05%. Второе измерение значительно лучше.

Относительной погрешностью называют отношение абсолютной погрешности к абсолютному значению приближенной величины:

В отличие от абсолютной погрешности, которая обычно есть величина размерная, относительная погрешность всегда есть величина безразмерная. Обычно ее выражают в %.

Пример

При измерении длины в 5 см допущена абсолютная погрешность в 0.1 см. Какова относительная погрешность? (Ответ 2%)

При подсчете числа жителей города, которое оказалось равным 2 000 000, допущена погрешность 100 человек. Какова относительная погрешность? (Ответ 0.005%)

Результат всякого измерения выражается числом, лишь приблизительно характеризующим измеряемую величину. Поэтому при вычислениях мы имеем дело с приближенными числами. При записи приближенных чисел принимается, что последняя цифра справа характеризует величину абсолютной погрешности.


Например, если записано 12.45, то это не значит, что величина, характеризуемая этим числом, не содержит тысячных долей. Можно утверждать, что тысячные доли при измерении не учитывались, следовательно, абсолютная погрешность меньше половины единицы последнего разряда: . Аналогично, относительно приближенного числа 1.283, можно сказать, что абсолютная погрешность меньше 0.0005: .

Приближенные числа принято записывать так, чтобы абсолютная погрешность не превышала единицы последнего десятичного разряда . Или, иначе говоря, абсолютная погрешность приближенного числа характеризуется числом десятичных знаков после запятой .

Как же быть, если при тщательном измерении какой-нибудь величины получится, что она содержит целую единицу, 2 десятых, 5 сотых, не содержит тысячных, а десятитысячные не поддаются учету? Если записать 1.25, то в этой записи тысячные не учтены, тогда как на самом деле мы уверены, что их нет. В таком случае принято ставить на их месте 0, – надо писать 1.250. Таким образом, числа 1.25 и 1.250 обозначают не одно и то же. Первое – содержит тысячные; мы только не знаем, сколько именно. Второе – тысячных не содержит, о десятитысячных ничего сказать нельзя.

Сложнее приходится при записи больших приближенных чисел. Пусть число жителей деревни равно 2000 человек, а в городе приблизительно 457 000 жителей. Причем относительно города в тысячах мы уверены, но допускаем погрешность в сотнях и десятках. В первом случае нули в конце числа указывают на отсутствие сотен, десятков и единиц, такие нули мы назовем значащими ; во втором случае нули указывают на наше незнание числа сотен, десятков и единиц. Такие нули мы назовем незначащими . При записи приближенного числа, содержащего нули надо дополнительно оговаривать их значимость. Обычно нули – незначащие. Иногда на незначимость нулей можно указывать, записывая число в экспоненциальном виде (457*10 3).

Сравним точность двух приближенных чисел 1362.3 и 2.37. В первом абсолютная погрешность не превосходит 0.1, во втором – 0.01. Поэтому второе число выглядит более точным, чем первое.

Подсчитаем относительную погрешность. Для первого числа ; для второго . Второе число значительно (почти в 100 раз) менее точно, чем первое. Получается это потому, что в первом числе дано 5 верных (значащих) цифр, тогда как во втором – только 3.

Все цифры приближенного числа, в которых мы уверены, будем называть верными (значащими) цифрами. Нули сразу справа после запятой не бывают значащими, они лишь указывают на порядок стоящих правее значащих цифр. Нули в крайних правых позициях числа могут быть как значащими, так и не значащими. Например, каждое из следующих чисел имеет 3 значащие цифры: 283*10 5 , 200*10 2 , 22.5, 0.0811, 2.10, 0.0000458.

Пример

Сколько значащих (верных) цифр в следующих числах:

0.75 (2), 12.050 (5), 1875*10 5 (4), 0.06*10 9 (1)

Оценить относительную погрешность следующих приближенных чисел:

нули значащие: 21000 (0.005%),

Нетрудно заметить, что для примерной оценки относительной погрешности числа достаточно подсчитать количество значащих цифр. Для числа, имеющего только одну значащую цифру относительная погрешность около 10%;

с 2-мя значащими цифрами – 1%;

с 3-мя значащими цифрами – 0.1%;

с 4-мя значащими цифрами – 0.01% и т.д.

При вычислениях с приближенными числами нас будет интересовать вопрос: как, исходя из данных приближенных чисел, получить ответ с нужной относительной погрешностью.

Часто при этом все исходные данные приходится брать с одной и той же погрешностью, именно с погрешностью наименее точного из данных чисел. Поэтому часто приходится более точное число заменять менее точным – округлять.

округление до десятых 27.136 » 27.1,

округление до целых 32.8 » 33.

Правило округления: Если крайняя левая из отбрасываемых при округлении цифр меньше 5, то последнюю сохраняемую цифру не изменяют; если крайняя левая из отбрасываемых цифр больше 5 или если она равна 5, то последнюю сохраняемую цифру увеличивают на 1.

Пример

округлить до десятых 17.96 (18.0)

округлить до сотых 14.127 (14.13)

округлить, сохранив 3 верные цифры: 83.501 (83.5), 728.21 (728), 0.0168835 (0.01688).



Вверх