Сообщение на тему тепловое движение. Тепловое движение. Броуновское движение

В окружающем нас мире происходят различного рода физические явления, которые напрямую связанны с изменением температуры тел . Еще с детства мы знаем, что холодная вода при нагревании сначала становится едва теплой и лишь спустя определенное время горячей.

Такими словами как «холодный», «горячий», «теплый», мы определяем различную степень «нагретости» тел, или, если говорить языком физики на различную температуру тел. Температура теплой воды немного выше температуры прохладной воды. Если сравнивать температуру летнего и зимнего воздуха, то разница в температуре очевидна.

Температура тел измеряется с помощью термометра и выражается в градусах Цельсия (°C).

Как известно, диффузия при более высокой температуре происходит быстрее. Из этого следует, что скорость перемещения молекул и температура глубоко взаимосвязаны между собой. Если увеличить температуру, то скорость движения молекул увеличится, если уменьшить – понизится.

Таким образом, делаем вывод: температура тела напрямую зависит от скорости перемещения молекул.

Горячая вода состоит из абсолютно таких же молекул, как и холодная. Разница между ними состоит лишь в скорости передвижения молекул.

Явления, которые имеют отношение к нагреву или охлаждению тел, изменению температуры, получили название тепловые. К ним можно отнести нагревание или охлаждение воздуха, плавку метала, таяние снега.

Молекулы, либо атомы, которые являются основой всех тел, находятся в бесконечном хаотичном движении. Количество подобных молекул и атомов в окружающих нас телах огромно. В объеме равном 1 см³ воды, содержится приблизительно 3,34 · 10²² молекул. Любая молекула имеет очень сложную траекторию движения. К примеру, частицы газа, передвигающиеся с большими скоростями в различных направлениях, могут сталкиваться как друг c другом, так и со стенками сосуда. Таким образом, они меняют свою скорость и опять продолжают движение.

Рисунок №1 демонстрирует беспорядочное движение частиц краски, растворенных в воде.

Таким образом, делаем еще один вывод: хаотичное движение частиц, которые составляют тела, называют тепловым движением.

Хаотичность является важнейшей чертой теплового движения. Одним из самых главных доказательств движения молекул является диффузия и Броуновское движение. (Броуновское движение – движение мельчайших твердых частиц в жидкости под воздействием ударов молекул. Как показывает наблюдение, Броуновское движение не может прекратиться).

В жидкостях молекулы могут колебаться, вращаться и двигаться относительно других молекул. Если брать твердые тела, то в них молекулы и атомы колеблются около некоторых средних положениях.

В тепловом движении молекул и атомов участвуют абсолютно все молекулы тела, именно поэтому с изменением теплового движения меняется и состояние самого тела, его различные свойства. Таким образом, если повысить температуру льда то он начинает таять, принимая при этом уже абсолютно другую форму – лед становится жидкостью. Если же наоборот, понижать температуру, к примеру, ртути, то она изменит свои свойства и из жидкости, превратится в твердое тело.

Температура тела напрямую зависит от средней кинетической энергии молекул. Делаем очевидный вывод: чем выше температура тела, тем больше средняя кинетическая энергия его молекул. И, наоборот, при понижении температуры тела, средняя кинетическая энергия его молекул уменьшается.

Если у вас остались вопросы, или вы хотите узнать больше о тепловом движении и температуре, зарегистрируйтесь на нашем сайте и получите помощь репетитора.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

И. В. Яковлев | Материалы по физике | MathUs.ru

Молекулярная физика и термодинамика

Данное пособие посвящено второму разделу ¾Молекулярная физика. Термодинамика¿ кодификатора ЕГЭ по физике. Оно охватывает следующие темы.

Тепловое движение атомов и молекул вещества. Броуновское движение. Диффузия. Экспериментальные доказательства атомистической теории. Взаимодействие частиц вещества.

Модели строения газов, жидкостей и твёрдых тел.

Модель идеального газа. Связь между давлением и средней кинетической энергией теплового движения молекул идеального газа. Абсолютная температура. Связь температуры газа со средней кинетической энергией его частиц. Уравнение p = nkT . Уравнение Менделеева Клапейрона.

Изопроцессы: изотермический, изохорный, изобарный, адиабатный процессы.

Насыщенные и ненасыщенные пары. Влажность воздуха.

Изменение агрегатных состояний вещества: испарение и конденсация, кипение жидкости, плавление и кристаллизация. Изменение энергии в фазовых переходах.

Внутренняя энергия. Тепловое равновесие. Теплопередача. Количество теплоты. Удельная теплоёмкость вещества. Уравнение теплового баланса.

Работа в термодинамике. Первый закон термодинамики.

Принципы действия тепловых машин. КПД тепловой машины. Второй закон термодинамики. Проблемы энергетики и охрана окружающей среды.

Пособие содержит также некоторый дополнительный материал, не входящий в кодификатор ЕГЭ (но входящий в школьную программу!). Этот материал позволяет лучше понять рассматриваемые темы.

1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Жидкости . . . . . . 10

Основные формулы молекулярной физики

Температура

Термодинамическая система . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Тепловое равновесие . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Температурная шкала. Абсолютная температура . . . . . . . . . . . . . . . . . . .

Уравнение состояния идеального газа

Средняя кинетическая энергия частиц газа . . . . . . . . . . . . . . . . . . . . . .

5.2 Основное уравнение МКТ идеального газа . . . . . . . . . . . . . . . . . . . . . . . 16

5.3 Энергия частиц и температура газа . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.1 Термодинамический процесс . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.2 Изотермический процесс . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.3 Графики изотермического процесса . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.4 Изобарный процесс . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.5 Графики изобарного процесса . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Изохорный процесс . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Графики изохорного процесса . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Насыщенный пар

7.1 Испарение и конденсация

7.2 Динамическое равновесие . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.3 Свойства насыщенного пара . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.1 Внутренняя энергия одноатомного идеального газа . . . . . . . . . . . . . . . . . . 29

8.2 Функция состояния . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8.3 Изменение внутренней энергии: совершение работы . . . . . . . . . . . . . . . . . . 30

8.4 Изменение внутренней энергии: теплопередача . . . . . . . . . . . . . . . . . . . . 30

8.5 Теплопроводность . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10 Фазовые переходы

10.1 Плавление и кристаллизация . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10.2 График плавления . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.3 Удельная теплота плавления . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10.4 График кристаллизации . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.5 Парообразование и конденсация . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10.6 Кипение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10.7 График кипения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10.8 График конденсации . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 Первый закон термодинамики

11.1 Работа газа в изобарном процессе . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

11.2 Работа газа в произвольном процессе . . . . . . . . . . . . . . . . . . . . . . . . . . 45

11.3 Работа, совершаемая над газом . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

11.4 Первый закон термодинамики . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11.5 Применение первого закона термодинамики к изопроцессам . . . . . . . . . . . . . 46

11.6 Адиабатный процесс . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12.1 Тепловые двигатели . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

12.2 Холодильные машины . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

13.1 Необратимость процессов в природе . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

13.2 Постулаты Клаузиуса и Кельвина . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1 Основные положения молекулярно-кинетической теории

Великому американскому физику Ричарду Фейнману, автору знаменитого курса ¾Фейнмановские лекции по физике¿, принадлежат замечательные слова:

Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это атомная гипотеза (можете называть ее не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому. В одной этой фразе. . . содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения.

В этих словах заключена суть молекулярно-кинетической теории (МКТ) строения вещества. А именно, основными положениями МКТ являются следующие три утверждения.

1. Любое вещество состоит из мельчайших частиц молекул и атомов. Они расположены в пространстве дискретно, то есть на некоторых расстояниях друг от друга.

2. Атомы или молекулы вещества находятся в состоянии беспорядочного движения 1 , которое никогда не прекращается.

3. Атомы или молекулы вещества взаимодействуют друг с другом силами притяжения и отталкивания, которые зависят от расстояний между частицами.

Эти положения являются обобщением многочисленных наблюдений и экпериментальных фактов. Давайте рассмотрим подробнее эти положения и приведём их опытное обоснование.

1.1 Атомы и молекулы

Возьмём бумажный листок и начнём делить его на всё более и более мелкие части. На каждом ли шаге мы будем получать кусочки именно бумаги, или на каком-то этапе появится нечто новое?

Первое положение МКТ говорит нам о том, что вещество не является делимым до бесконечности. Рано или поздно мы дойдём до ¾последнего рубежа¿ мельчайших частиц данного вещества. Эти частицы атомы и молекулы. Их также можно разделить на части, но тогда исходное вещество прекратит своё существование.

Атом это наименьшая частица данного химического элемента, сохраняющая все его химические свойства. Химических элементов не так много все они сведены в таблицу Менделеева.

Молекула это наименьшая частица данного вещества (не являющегося химическим элементом), сохраняющая все его химические свойства. Молекула состоит из двух или более атомов одного или нескольких химических элементов.

Например, H2 O это молекула воды, состоящая из двух атомов водорода и одного атома кислорода. Разделив её на атомы, мы перестанем иметь дело в веществом под названием ¾вода¿. Далее, разделив атомы H и O на составные части, мы получим набор протонов, нейтронов и электронов и тем самым потеряем информацию о том, что поначалу это были водород и кислород.

1 Это движение называется тепловым движением.

Размер атома или молекулы (состоящей из небольшого числа атомов) составляет порядка 10 8 см. Это настолько малая величина, что атом невозможно разглядеть ни в какой оптический микроскоп.

Атомы и молекулы называются для краткости просто частицами вещества. Чем именно является частица атомом или молекулой в каждом конкретном случае установить нетрудно. Если речь идёт о химическом элементе, то частицей будет атом; если же рассматривается сложное вещество, то его частица это молекула, состоящая из нескольких атомов.

Далее, первое положение МКТ утверждает, что частицы вещества не заполняют пространство непрерывно. Частицы расположены дискретно, то есть как бы в отдельных точках. Между частицами имеются промежутки, величина которых может меняться в некоторых пределах.

В пользу первого положения МКТ свидетельствует явление теплового расширения тел. А именно, при нагревании увеличиваются расстояния между частицами вещества, и размеры тела возрастают. При охлаждении, наоборот, расстояния между частицами уменьшаются, в результате чего тело сжимается.

Ярким подтверждением первого положения МКТ служит также диффузия взаимное проникновение соприкасающихся веществ друг в друга.

Например, на рис. 1 показан2 процесс диффузии в жидкости. Частицы растворимого вещества помещены в стакан с водой и расположены вначале в верхней левой части стакана. С течением времени частицы перемещаются (как говорят, диффундируют) из области высокой концентрации в область низкой концентрации. В конце концов концентрация частиц становится везде одинаковой частицы равномерно распределяются по всему объёму жидкости.

Рис. 1. Диффузия в жидкости

Как объяснить диффузию с точки зрения молекулярно-кинетической теории? Очень просто: частицы одного вещества проникают в промежутки между частицами другого вещества. Диффузия идёт тем быстрее, чем больше эти промежутки поэтому легче всего смешиваются друг с другом газы (в которых расстояния между частицами много больше размеров самих частиц).

1.2 Тепловое движение атомов и молекул

Напомним ещё раз формулировку второго положения МКТ: частицы вещества совершают беспорядочное движение (называемое также тепловым движением), которое никогда не прекращается.

Опытным подтверждением второго положения МКТ служит опять-таки явление диффузии ведь взаимное проникновение частиц возможно лишь при их беспрерывном движении!

2 Изображение с сайтаen.wikipedia.org .

Но наиболее ярким доказательством вечного хаотического движения частиц вещества является броуновское движение. Так называется непрерывное беспорядочное движение броуновских частиц пылинок или крупинок (размерами 10 5 – 104 см), взвешенных в жидкости или газе.

Броуновское движение получило своё название в честь шотландского ботаника Роберта Броуна, увидевшего в микроскоп беспрерывную пляску взвешенных в воде частиц цветочной пыльцы. В доказательство того, что это движение совершается вечно, Броун нашёл кусок кварца с полостью, заполненной водой. Несмотря на то, что вода попала туда много миллионов лет назад, оказавшиеся там соринки продолжали своё движение, которое ничем не отличалось от того, что наблюдалось в других опытах.

Причина броуновского движения заключается в том, что взвешенная частица испытывает нескомпенсированные удары со стороны молекул жидкости (газа), причём в силу хаотичности движения молекул величина и направление результирующего воздействия абсолютно непредсказуемы. Поэтому броуновская частица описывает сложные зигзагообразные траектории (рис. 2 )3 .

Рис. 2. Броуновское движение

Размеры броуновских частиц в 1000–10000 раз превышают размер атома. С одной стороны, броуновская частица достаточна мала и пока ещё ¾чувствует¿, что в разных направлениях по ней бьёт различное количество молекул; это различие в числе ударов приводит к заметным перемещениям броуновской частицы. С другой стороны, броуновские частицы достаточно велики для того, чтобы их можно было разглядеть в микроскоп.

Кстати говоря, броуновское движение может рассматриваться и как доказательство самого факта существования молекул, т. е. также может служить опытным обоснованием первого положения МКТ.

1.3 Взаимодействие частиц вещества

Третье положение МКТ говорит о взаимодействии частиц вещества: атомы или молекулы взаимодействуют друг с другом силами притяжения и отталкивания, которые зависят от расстояний между частицами: при увеличении расстояний начинают преобладать силы притяжения, при уменьшении силы отталкивания.

О справедливости третьего положения МКТ свидетельствуют силы упругости, возникающие при деформациях тел. При растяжении тела увеличиваются расстояния между его частицами, и начинают преобладать силы притяжения частиц друг к другу. При сжатии тела расстояния между частицами уменьшаются, и в результате преобладают силы отталкивания. В обоих случаях упругая сила направлена в сторону, противоположную деформации.

3 Изображение с сайта nv-magadan.narod.ru .

Другим подтверждением существования сил межмолекулярного взаимодействия служит наличие трёх агрегатных состояний вещества.

В газах молекулы удалены друг от друга на расстояния, значительно превышающие размеры самих молекул (в воздухе при нормальных условиях примерно в 1000 раз). На таких расстояниях силы взаимодействия между молекулами практически отсутствуют, поэтому газы занимают весь предоставленный им объём и легко сжимаются.

В жидкостях промежутки между молекулами сравнимы с размерами молекул. Силы молекулярного притяжения весьма ощутимы и обеспечивают сохранение жидкостями объёма. Но для сохранения жидкостями ещё и формы эти силы недостаточно велики жидкости, как и газы, принимают форму сосуда.

В твёрдых телах силы притяжения между частицами очень велики: твёрдые тела сохраняют не только объём, но и форму.

Переход вещества из одного агрегатного состояния в другое является результатом изменения величины сил взаимодействия между частицами вещества. Сами частицы остаются при этом неизменными.

Темы кодификатора ЕГЭ: тепловое движение атомов и молекул вещества, броуновское движение, диффузия, взаимодействие частиц вещества, экспериментальные доказательства атомистической теории.

Великому американскому физику Ричарду Фейнману, автору знаменитого курса "Фейнмановские лекции по физике", принадлежат замечательные слова:

– Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что - это атомная гипотеза (можете называть ее не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому . В одной этой фразе... содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения.

В этих словах заключена суть молекулярно-кинетической теории (МКТ) строения вещества. А именно, основными положениями МКТ являются следующие три утверждения.

1. Любое вещество состоит из мельчайших частиц молекул и атомов. Они расположены в пространстве дискретно, то есть на некоторых расстояниях друг от друга.
2. Атомы или молекулы вещества находятся в состоянии беспорядочного движения(это движение называется тепловым движением), которое никогда не прекращается.
3. Атомы или молекулы вещества взаимодействуют друг с другом силами притяжения и отталкивания, которые зависят от расстояний между частицами.

Эти положения являются обобщением многочисленных наблюдений и экпериментальных фактов. Давайте рассмотрим подробнее эти положения и приведём их опытное обоснование.

Например, - это молекула воды, состоящая из двух атомов водорода и одного атома кислорода. Разделив её на атомы, мы перестанем иметь дело в веществом под названием "вода". Далее, разделив атомы и на составные части, мы получим набор протонов, нейтронов и электронов и тем самым потеряем информацию о том, что поначалу это были водород и кислород.

Атомы и молекулы называются для краткости просто частицами вещества. Чем именно является частица - атомом или молекулой - в каждом конкретном случае установить нетрудно. Если речь идёт о химическом элементе, то частицей будет атом; если же рассматривается сложное вещество, то его частица - это молекула, состоящая из нескольких атомов.

Далее, первое положение МКТ утверждает, что частицы вещества не заполняют пространство непрерывно. Частицы расположены дискретно , то есть как бы в отдельных точках. Между частицами имеются промежутки, величина которых может меняться в некоторых пределах.

В пользу первого положения МКТ свидетельствует явление теплового расширения тел. А именно, при нагревании увеличиваются расстояния между частицами вещества, и размеры тела возрастают. При охлаждении, наоборот, расстояния между частицами уменьшаются, в результате чего тело сжимается.

Ярким подтверждением первого положения МКТ служит также диффузия - взаимное проникновение соприкасающихся веществ друг в друга.

Например, на рис. 1 показан процесс диффузии в жидкости. Частицы растворимого вещества помещены в стакан с водой и расположены вначале в верхней левой части стакана. С течением времени частицы перемещаются (как говорят, диффундируют ) из области высокой концентрации в область низкой концентрации. В конце концов концентрация частиц становится везде одинаковой - частицы равномерно распределяются по всему объёму жидкости.

Рис. 1. Диффузия в жидкости

Как объяснить диффузию с точки зрения молекулярно-кинетической теории? Очень просто: частицы одного вещества проникают в промежутки между частицами другого вещества. Диффузия идёт тем быстрее, чем больше эти промежутки - поэтому легче всего смешиваются друг с другом газы (в которых расстояния между частицами много больше размеров самих частиц).

Тепловое движение атомов и молекул

Напомним ещё раз формулировку второго положения МКТ: частицы вещества совершают беспорядочное движение (называемое также тепловым движением), которое никогда не прекращается.

Опытным подтверждением второго положения МКТ служит опять-таки явление диффузии ведь взаимное проникновение частиц возможно лишь при их беспрерывном движении! Но наиболее ярким доказательством вечного хаотического движения частиц вещества является броуновское движение . Так называется непрерывное беспорядочное движение броуновских частиц - пылинок или крупинок (размерами см), взвешенных в жидкости или газе.

Броуновское движение получило своё название в честь шотландского ботаника Роберта Броуна, увидевшего в микроскоп беспрерывную пляску взвешенных в воде частиц цветочной пыльцы. В доказательство того, что это движение совершается вечно, Броун нашёл кусок кварца с полостью, заполненной водой. Несмотря на то, что вода попала туда много миллионов лет назад, оказавшиеся там соринки продолжали своё движение, которое ничем не отличалось от того, что наблюдалось в других опытах.

Причина броуновского движения заключается в том, что взвешенная частица испытывает нескомпенсированные удары со стороны молекул жидкости (газа), причём в силу хаотичности движения молекул величина и направление результирующего воздействия абсолютно непредсказуемы. Поэтому броуновская частица описывает сложные зигзагообразные траектории (рис. 2 ).

Рис. 2. Броуновское движение

Кстати говоря, броуновское движение может рассматриваться и как доказательство самого факта существования молекул, т. е. также может служить опытным обоснованием первого положения МКТ.

Взаимодействие частиц вещества

Третье положение МКТ говорит о взаимодействии частиц вещества: атомы или молекулы взаимодействуют друг с другом силами притяжения и отталкивания, которые зависят от расстояний между частицами: при увеличении расстояний начинают преобладать силы притяжения, при уменьшении - силы отталкивания.

О справедливости третьего положения МКТ свидетельствуют силы упругости, возникающие при деформациях тел. При растяжении тела увеличиваются расстояния между его частицами, и начинают преобладать силы притяжения частиц друг к другу. При сжатии тела расстояния между частицами уменьшаются, и в результате преобладают силы отталкивания. В обоих случаях упругая сила направлена в сторону, противоположную деформации.

Другим подтверждением существования сил межмолекулярного взаимодействия служит наличие трёх агрегатных состояний вещества.

В газах молекулы удалены друг от друга на расстояния, значительно превышающие размеры самих молекул (в воздухе при нормальных условиях - примерно в 1000 раз). На таких расстояниях силы взаимодействия между молекулами практически отсутствуют, поэтому газы занимают весь предоставленный им объём и легко сжимаются.

В жидкостях промежутки между молекулами сравнимы с размерами молекул. Силы молекулярного притяжения весьма ощутимы и обеспечивают сохранение жидкостями объёма. Но для сохранения жидкостями ещё и формы эти силы недостаточно велики - жидкости, как и газы, принимают форму сосуда.

В твёрдых телах силы притяжения между частицами очень велики: твёрдые тела сохраняют не только объём, но и форму.

Переход вещества из одного агрегатного состояния в другое является результатом изменения величины сил взаимодействия между частицами вещества. Сами частицы остаются при этом неизменными.

Теория: Атомы и молекулы находятся в непрерывном тепловом движении, движутся хаотически, постоянно из-за соударений меняют направление и модуль скорости.

Чем выше температура, тем выше скорость движения молекул. При понижении температуры уменьшается скорость движения молекул. Существует температура, которую называют "абсолютный ноль" - температура(-273 °С) при которой прекращается тепловое движение молекул. Но "абсолютный ноль" недостижим.
Броуновское движение - беспорядочное движение микроскопических видимых взвешенных в жидкости или газе частиц твёрдого вещества, вызываемое тепловым движением частиц жидкости или газа. Впервые это явление наблюдал в 1827 году Роберт Броун. Он исследовал пыльцу растений, которая находилась в водной среде. Броун заметил, что пыльца с течением времени все время смещается, и чем выше температура, тем быстрее скорость смещения пыльцы. Он предположил, что движение пыльцы связано с тем, что молекулы воды ударяются о пыльцу и заставляют ее двигаться.

Диффузия - процесс взаимного проникновения молекул одного вещества в промежутки между молекулами другого вещеста.

Примером броуновского движения является
1) беспорядочное движение цветочной пыльцы в капельке воды
2) беспорядочное движение мошек под фонарём
3) растворение твёрдых веществ в жидкостях
4) проникновение питательных веществ из почвы в корни растений
Решение: из определения броуновского движения понятно, что правильный ответ 1. Пыльца беспорядочно движется по причине того, что молекулы воду ударяются об нее. Беспорядочное движение мошек под фонарём не подходит так как мошки сами выбирают направление движения, последние два ответа это примеры диффузии.
Ответ: 1.

Задание огэ по физике (решу егэ): Какое(-ие) из нижеприведённых утверждений являе(-ю)тся правильным(-и)?
А. Молекулы или атомы в веществе находятся в непрерывном тепловом движении, и одним из аргументов в пользу этого служит явление диффузии.
Б. Молекулы или атомы в веществе находятся в непрерывном тепловом движении, и доказательством этому служит явление конвекции.
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
Решение: Диффузия - процесс взаимного проникновения молекул одного вещества в промежутки между молекулами другого вещеста. Первое утверждение верно, Конвенкция - перенос внутренней энергии со слоями жидкости или газа, получается что второе утверждение не верно.
Ответ: 1.

Задание огэ по физике (фипи): 2) Свинцовый шарик нагревают в пламени свечи. Как в процессе нагревания изменяется объём шарика и средняя скорость движения его молекул?
Установите соответствие между физическими величинами и их возможными изменениями.
Для каждой величины определите соответствующий характер изменения:
1) увеличивается
2) уменьшается
3) не изменяется
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Решение (Спасибо Милене) : 2) 1.Объём шарика увеличится за счёт того, что молекулы начнут двигаться быстрее.
2. Скорость молекул при нагревании увеличится.
Ответ: 11.

Задание демонстрационного варианта ОГЭ 2019: Одно из положений молекулярно-кинетической теории строения вещества заключается в том, что «частицы вещества (молекулы, атомы, ионы) находятся в непрерывном хаотическом движении». Что означают слова «непрерывное движение»?
1) Частицы всё время движутся в определённом направлении.
2) Движение частиц вещества не подчиняется никаким законам.
3) Частицы все вместе движутся то в одном, то в другом направлении.
4) Движение молекул никогда не прекращается.
Решение: Молекулы движутся, из за соударений скорость молекул постоянно меняется, поэтому мы не можем высчитать скорость и направление каждой молекулы, но мы можем высчитать среднюю квадратичную скорость молекул, и она связана с температурой, при понижении температуры скорость молекул уменьшается. Посчитано, что температура при которой прекратится движение молекул равна -273 °С (минимальная возможная температура в природе). Но она не достижима. поэтому молекулы никогда не перестанут двигаться.

События физического мира неотрывно связаны с изменениями температуры. С ней каждый человек знакомится в раннем детстве, когда понимает, что лед холодный, а кипяток обжигает. В то же время приходит понимание, что процессы изменения температуры не происходят мгновенно. Уже потом в школе ученик изучает, что связано это с тепловым движением. И процессам, связанным с температурой, выделен целый раздел физики.

Что такое температура?

Это научное понятие введено для замены обыденных терминов. В повседневной жизни постоянно фигурируют такие слова, как горячий, холодный или теплый. Все они говорят о степени нагретости тела. Именно так она определяется в физике, только с добавлением, что это скалярная величина. Ведь температура не имеет направления, а только числовое значение.

В международной системе единиц (СИ) температура измеряется в градусах Цельсия (ºС). Но во многих формулах, описывающих тепловые явления, требуется переводить ее в Кельвины (К). Для этого существует простая формула: Т = t + 273. В ней Т — температура в Кельвинах, а t — в Цельсиях. Со шкалой Кельвина связано понятие об абсолютном нуле температур.

Существует еще несколько шкал температур. В Европе и Америке, например, в ходу Фаренгейты (Ф). Поэтому их необходимо уметь записывать в Цельсиях. Для этого из показаний в Ф полагается вычесть 32, потом разделить его на 1,8.

Домашний эксперимент

В его объяснении требуется знать такие понятия, как температура, тепловое движение. Да и выполнить этот опыт просто.

Для него потребуется взять три емкости. Они должны быть достаточно большими, чтобы в них легко могли поместиться кисти рук. Наполнить их водой разной температуры. В первом она должна быть очень холодной. Во втором — подогретая. В третий налить горячую воду, такую, в которой руку будет возможно держать.

Теперь сам опыт. Опустить левую руку в емкость с холодной водой, правую — с самой горячей. Подождать пару минут. Вынуть их и сразу погрузить в сосуд с теплой водой.

Результат окажется неожиданным. Левой руке будет казаться, что вода теплая, у правой возникнет ощущение холодной воды. Это связано с тем, что вначале устанавливается тепловое равновесие с теми жидкостями, в которые руки погружены изначально. А потом это равновесие резко нарушается.

Основные положения молекулярно-кинетической теории

Она описывает все тепловые явления. А утверждения эти достаточно просты. Поэтому в разговоре о тепловом движении эти положения знать необходимо.

Первое: вещества образованы мельчайшими частицами, расположенными на некотором удалении друг от друга. Причем этими частицами могут оказаться как молекулы, так и атомы. А расстояние между ними во много раз больше размеров частиц.

Второе: во всех веществах наблюдается тепловое движение молекул, которое никогда не прекращается. Частицы при этом двигаются беспорядочно (хаотично).

Третье: частицы взаимодействуют между собой. Это действие обусловлено силами притяжения и отталкивания. Их величина зависит от расстояния между частицами.

Подтверждение первого положения МКТ

Доказательством того, что тела состоят из частиц, между которыми есть промежутки, служит их Так, при нагревании тела его размер увеличивается. Происходит это из-за удаления частиц друг от друга.

Другим подтверждением сказанному является диффузия. То есть проникновение молекул одного вещества между частицами другого. Причем это перемещение оказывается взаимным. Диффузия проходит тем быстрее, чем дальше друг от друга расположены молекулы. Поэтому в газах взаимное проникновение произойдет гораздо быстрее, чем в жидкостях. А в твердых телах на диффузию требуются года.

Кстати, последний процесс объясняет и тепловое движение. Ведь взаимное проникновение веществ друг в друга происходит без какого-либо вмешательства со стороны. Но его можно ускорить, если нагреть тело.

Подтверждение второго положения МКТ

Яркое доказательство того, что существует тепловое движение — это броуновское движение частиц. Оно рассматривается для взвешенных частиц, то есть для тех, которые существенно больше молекул вещества. Этими частицами могут быть пылинки или крупинки. А помещать их полагается в воду или газ.

Причина беспорядочного движения взвешенной частицы в том, что со всех сторон на нее действуют молекулы. Их действие беспорядочно. Величина воздействий в каждый момент времени разная. Поэтому результирующая сила направлена то в одну, то в другую сторону.

Если говорить о скорости теплового движения молекул, то для нее есть особое название — средняя квадратичная. Ее можно вычислить по формуле:

v = √[(3kT)/m 0 ].

В ней Т — температура в Кельвинах, m 0 — масса одной молекулы, k — постоянная Больцмана (k=1,38*10 -23 Дж/К).

Подтверждение третьего положения МКТ

Частицы притягиваются и отталкиваются. В объяснении многих процессов, связанных с тепловым движением, это знание оказывается важным.

Ведь силы взаимодействия зависят от агрегатного состояния вещества. Так, у газов их практически нет, так как частицы удалены так сильно, что их действие не проявляется. В жидкостях и твердых телах они ощутимы и обеспечивают сохранение объема вещества. В последних они гарантируют еще и поддержание формы.

Доказательством существования сил притяжения и отталкивания является появление сил упругости при деформации тел. Так, при удлинении усиливаются силы притяжения между молекулами, а при сжатии — отталкивания. Но в обоих случаях они возвращают телу первоначальную форму.

Средняя энергия теплового движения

(pV)/N = (2E)/3.

В этой формуле p — давление, V — объем, N — число молекул, E — средняя кинетическая энергия.

С другой стороны, это уравнение можно записать так:

Если их объединить, то получится следующее равенство:

Из него следует такая формула для средней кинетической энергии молекул:

Отсюда видно, что энергия пропорциональна температуре вещества. То есть при повышении последней частицы двигаются быстрее. В этом и заключается суть теплового движения, которое существует, пока есть температура, отличная от абсолютного нуля.



Вверх