При какой температуре происходит испарение. Молекулярная физика. Испарение и конденсация

Если оставить незакрытым сосуд с водой, то через некоторое время вода испарится. Если проделать тот же опыт с этиловым спиртом или бензином, то процесс происходит несколько быстрее. Если кастрюлю с водой нагревать на достаточно мощной горелке, то вода закипит.

Все эти явления являются частным случаем парообразования превращения жидкости в пар. Существует два вида парообразования испарение и кипение.

Что такое испарение

Испарением называют парообразование с поверхности жидкости. Объяснить испарение можно следующим образом.

При соударениях скорости молекул меняются. Часто находятся молекулы, скорость которых настолько велика, что они преодолевают притяжение соседних молекул и отрываются от поверхности жидкости. (Молекулярное строение вещества). Так как даже в небольшом объёме жидкости очень много молекул, такие случаи получаются довольно часто, и идёт постоянный процесс испарения.

Отделившиеся от поверхности жидкости молекулы образуют над ней пар. Некоторые из них вследствие хаотического движения возвращаются обратно в жидкость. Поэтому испарение происходит быстрее, если есть ветер, так как он уносит пар в сторону от жидкости (здесь также имеет место явление «захвата» и отрыва молекул с поверхности жидкости ветром).

Поэтому же в закрытом сосуде испарение быстро прекращается: количество «оторвавшихся» за единицу времени молекул становится равно количеству «вернувшихся» в жидкость.

Интенсивность испарения зависит от рода жидкости: чем меньше притяжение между молекулами жидкости, тем интенсивнее испарение.

Чем больше площадь поверхности жидкости, тем больше молекул имеют возможность покинуть её. Значит, интенсивность испарения зависит от площади поверхности жидкости.

При повышении температуры скорости молекул возрастают. Поэтому чем выше температура, тем интенсивнее испарение.

Что такое кипение

Кипение это интенсивное парообразование, которое происходит в результате нагревания жидкости, образования в ней пузырьков пара, всплывающих на поверхность и разрывающихся там.

Во время кипения температура жидкости остаётся постоянной.

Температура кипения это температура, при которой жидкость кипит. Обычно, говоря о температуре кипения данной жидкости, подразумевают температуру, при которой эта жидкость кипит при нормальном атмосферном давлении.

При парообразовании молекулы, которые отделились от жидкости, уносят из неё часть внутренней энергии. Поэтому при испарении жидкость охлаждается.

Удельная теплота парообразования

Физическую величину, характеризующую количество теплоты, которое требуется для испарения единичной массы вещества, называют удельной теплотой парообразования . (по ссылке более подробный разбор этой темы)

В системе СИ единица измерения этой величины Дж/кг. Её обозначают буквой L.

ученица 9 Б класса Чернышова Кристина МБОУ СОШ №27 г.Ставрополя.

Тема данной исследовательской работы - исследование зависимости скорости испарения от различных внешних условий. Эта проблема остается актуальной в различных технологических сферах и в окружающей нас природе. Достаточно сказать, что круговорот воды в природе происходит через фазы испарения и объемной конденсации. От круговорота воды, в свою очередь, зависят такие важнейшие явления, как солнечное воздействие на планету или просто нормальное существование живых существ в целом.

Гипотеза : скорость испарения зависит от рода вещества, площади поверхности жидкости и температуры воздуха, наличие перемещающихся воздушных потоков над ее поверхностью.

Скачать:

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 27

Исследовательская работа:

«Испарение и факторы, влияющие на этот процесс»

Выполнила: ученица 9 Б класса

Чернышова Кристина.

Учитель: Ветрова Л. И.

Ставрополь

2013

I.Введение…………………………………………………………………....…….3

II Теоретическая часть………………………………...………………………….4

1.Основные положения молекулярно-кинетической теории…………………4

2. Температура…………………………………………………………..………...6

3. Характеристика жидкого состояния вещества…………………………….....7

4. Внутренняя энергия …………………………………………………….……..8

5. Испарение……………………………………………………………………..10

III .Исследовательская часть………………………………..…………………..14

IV.Заключение……………………………………………………………….…..21

V.Литература…………………………………………………………………….22

Введение

Тема данной исследовательской работы - исследование зависимости скорости испарения от различных внешних условий. Эта проблема остается актуальной в различных технологических сферах и в окружающей нас природе. Достаточно сказать, что круговорот воды в природе происходит через фазы испарения и объемной конденсации. От круговорота воды, в свою очередь, зависят такие важнейшие явления, как солнечное воздействие на планету или просто нормальное существование живых существ в целом.

Испарение широко применяется в промышленной практике для очистки веществ, сушки материалов, разделения жидких смесей, кондиционирования воздуха. Испарительное охлаждение воды используется в оборотных системах водоснабжения предприятий.

В карбюраторных и дизельных двигателях распределение по размерам частиц топлива определяет скорость их горения, а значит и процесс работы двигателя. Конденсационные туманы не только паров воды образуются при сгорании различных топлив, при этом образуется множество ядер конденсации, которые могут служить центрами конденсации для других паров. Эти сложные процессы определяют коэффициент полезного действия двигателей и потери топлива. Достижение наилучших результатов в исследовании этих явлений могло бы служить информацией для движения технического прогресса в нашей стране.

Итак , цель данной работы - исследовать зависимость скорости испарения от различных факторов среды и с помощью построения графиков и тщательных наблюдений заметить закономерности.

Гипотеза : скорость испарения зависит от рода вещества, площади поверхности жидкости и температуры воздуха, наличие перемещающихся воздушных потоков над ее поверхностью.

При проведении исследования мы пользовались различными несложными приборами, такими как, термометр, а также интернет-ресурсами и другой литературой.

II Теоретическая часть.

1. Основные положения молекулярно-кинетической теории

Многообразны и различны свойства встречающихся в природе и технике, веществ: стекло прозрачно и _хрупко, а сталь упруга и непрозрачна, медь и серебро - хорошие проводники тепла и электричества, а фарфор и шелк - плохие и т. д.

Каково внутреннее строение любого вещества? Является сплошным(непрерывным) или имеет зернистое (дискретное) строение, подобное строению кучи песка?

Вопрос о строении вещества был поставлен еще в Древней Греции, однако отсутствие экспериментальных данных делало его решение невозможным, и долгое время (свыше двух тысячелетий) не удавалось проверить гениальные догадки о строении вещества, высказанные древнегреческими мыслителями Левкиппом и Демокритом (460- 370 гг. до н. э.), которые учили, что все в природе состоит из атомов, находящихся в непрерывном движении. Их учение впоследствии было забыто, и в средние века вещество считали уже непрерывным, а изменение, состояния тел объясняли с помощью невесомых жидкостей, каждая из которых олицетворяла определенное свойство материи и могла как входить в тело, так и выходить из него. Например, считали, что добавление теплорода к телу вызывает его нагревание, наоборот - охлаждение тела происходит вследствие вытекания теплорода и т. п.

В середине XVII в. французский ученый П. Гассенди (1592-1655 гг.) вернулся к взглядам Демокрита. Он считал, что в природе имеются вещества, которые нельзя разложить на более простые составные части. Такие вещества теперь называют химическими элементами, например водород, кислород, медь и т. д. По Гассенди каждый элемент состоит из атомов определенного вида.

Различных элементов в природе сравнительно немного, но их атомы, соединяясь в группы (среди них могут быть и одинаковые атомы), дают мельчайшую частичку нового вида вещества - молекулу. В зависимости от числа и вида атомов в молекуле получаются вещества с разнообразными свойствами.

В XVIII в. появились работы М. В. Ломоносова, заложившие основы молекулярно-кинетической теории строения вещества. Ломоносов решительно боролся за изгнание из физики невесомых жидкостей, подобных теплороду, а также атомов холода, запаха и т. п., которыми широко пользовались в то время для объяснения соответствующих явлений. Ломоносов доказал, что все явления» естественно объясняются движением и взаимодействием молекул вещества. - |В начале XIX столетия английский ученый Д. Дальтон (1766-1844 гг.) показал, что, пользуясь лишь представлениями об атомах и молекулах, можно вывести и объяснить известные из опытов химические закономерности. Тем самым он научно обосновал молекулярное строение вещества. После работ Дальтона существование атомов и молекул было признано огромным большинством ученых.

К началу XX в. были измерены размеры, массы и скорости движения молекул вещества, выяснено расположение отдельных атомов в молекулах, словом, окончательно завершено построение молекулярно-кинетической теории строения вещества, выводы которой были подтверждены множеством опытов.

Основные положения этой теории следующие:

1) всякое вещество состоит из молекул, между которыми имеются межмолекулярные промежутки;

2) молекулы всегда находятся в непрерывном беспорядочном (хаотическом) движении;

3) между молекулами действуют как силы притяжения, так и силы отталкивания. Эти силы зависят от расстояния между молекулами. Они имеют значительную величину лишь при очень малых расстояниях и быстро уменьшаются при удалении молекул друг от друга. Природа этих сил электрическая.

2. Температура.

Если все тела состоят из непрерывно и беспорядочно движущихся молекул, то в чем будет проявляться изменение скорости движения молекул, т. е. их кинетической энергии, и какие ощущения у человека вызовут эти изменения? Оказывается, что изменение средней кинетической энергии поступательного движения молекул связано с нагреванием или охлаждением тел.

Нередко человек определяет нагретость тела на ощупь, например, прикасаясь рукой к радиатору отопления, мы говорим: радиатор холодный, теплый или горячий. Однако определение нагретости тела на ощупь часто оказывается обманчивым. Когда зимой человек прикасается рукой к деревянному и металлическому телам, то ему кажется, что металлический предмет холоднее деревянного, хотя в действительности их нагретость одинакова. Следовательно, нужно установить такую величину, которая оценивала бы нагретость тела объективно, и создать прибор для ее измерения.

Величина, характеризующая степень нагретости тела, называется температурой. Прибор для измерения температуры называется термометром. Действие наиболее распространенных термометров основано на расширении тел при нагревании и сжатии при охлаждении. При соприкосновении двух тел с разной температурой между телами происходит обмен энергией. При этом более нагретое тело (с высокой температурой) теряет энергию, а менее нагретое (с низкой температурой) приобретает ее. Такой обмен энергией между телами ведет к выравниванию их температур и заканчивается, когда температуры тел становятся равными.

Ощущение тепла у человека возникает в том случае, когда он получает энергию от окружающих тел, т. е. когда их температура выше, чем температура человека. Ощущение холода связано с отдачей человеком энергии окружающим телам. В приведенном выше примере металлическое тело кажется человеку более холодным, чем деревянное, потому, что металлическим телам энергия от руки передается быстрее, чем деревянным, и в первом случае температура руки понижается быстрее.

3. Характеристика жидкого состояния вещества.

Молекулы жидкости в течение некоторого времени t колеблются около случайно возникшего положения равновесия, а затем перескакивают в новое положение. Время, в течение которого молекула колеблется около положения равновесия, называется временем «оседлой жизни» молекулы. Оно зависит от рода жидкости и ее температуры. При нагревании жидкости время «оседлой жизни» уменьшается.

Если в жидкости выделить достаточно малый объем, то в течение времени «оседлой жизни» в нем сохраняется упорядоченное расположение молекул жидкости, т. е. имеется подобие кристаллической решетки твердых тел. Однако если рассматривать расположение молекул жидкости относительно друг друга в большом объеме жидкости, то оно оказывается хаотическим.

Следовательно, можно сказать, что в жидкости существует «ближний порядок» в расположении молекул. Упорядоченное расположение молекул жидкости в малых объемах называется квазикристаллическим (кристаллоподобным). При кратковременных воздействиях на жидкость, меньших времени «оседлой жизни», обнаруживается большое сходство свойств жидкости со свойствами твердого вещества. Например, при резком ударе небольшого камня с плоской поверхностью о воду камень отскакивает от нее, т. е. жидкость проявляет упругие свойства. Если прыгающий с вышки пловец ударится о поверхность воды всем телом, то он сильно ушибется, так как при этих условиях жидкость ведет себя подобно твёрдому телу.

Если же время воздействия на жидкость оказывается больше времени «оседлой жизни» молекул, то обнаруживается текучесть жидкости. Например, человек свободно входит в воду с берега реки и т. п. Основными признаками жидкого состояния являются текучесть жидкости и сохранение объема. Текучесть жидкости тесно связана со временем «оседлой жизни» ее молекул. Чем меньше это время, тем большей подвижностью обладают молекулы жидкости, т. е. тем больше текучесть жидкости, а ее свойства ближе к свойствам газа.

Чем выше температура жидкости, тем больше ее свойства отличаются от свойств твердого вещества и становятся ближе к свойствам плотных газов. Таким образом, жидкое состояние вещества является промежуточным между твердым и газообразным состоянием того же вещества.

4. Внутренняя энергия

Всякое тело представляет собой совокупность огромного множества частиц. В зависимости от структуры вещества этими частицами являются молекулы, атомы или ионы. Каждая из этих частиц, в свою очередь, имеет достаточно сложную структуру. Так, молекула состоит из двух или нескольких атомов, атомы состоят из ядра и электронной оболочки; ядро состоит из протонов и нейтронов и т. д.

Частицы, из которых состоит тело, находятся в непрерывном движении; кроме того, они определенным образом взаимодействуют друг с другом.

Внутренней энергией тела называют сумму кинетических энергий частиц, из которых оно состоит, и энергий их взаимодействия друг с другом (потенциальных энергий).

Выясним, при каких процессах может меняться внутренняя энергия тела.

1. Прежде всего очевидно, что внутренняя энергия тела меняется при его деформации. В самом деле, при деформации меняется расстояние между частицами; следовательно, меняется и энергия взаимодействия между ними. Лишь в идеальном газе, где силами взаимодействия между частицами пренебрегают, внутренняя энергия от давления не зависит.

2. Внутренняя энергия меняется при тепловых процессах. Тепловыми называют процессы, связанные с изменением как температуры тела, так и его агрегатного состояния - плавлением или затвердеванием, испарением или конденсацией. При изменении температуры меняется кинетическая энергия движения его частиц. Однако следует подчеркнуть, что одновременно ме-

няется и потенциальная энергия их взаимодействия (за исключением случая разреженного газа). Действительно, повышение или понижение температуры сопровождается изменением расстояния между положениями равновесия в узлах кристаллической решетки тела, что мы регистрируем как тепловое расширение тел. Естественно, что при этом меняется энергия взаимодействия частиц. Переход же из одного агрегатного состояния в другое является результатом изменения молекулярной структуры тела, что вызывает изменение как энергии взаимодействия частиц, так и характера их движения.

3. Внутренняя энергия тела меняется при химических реакциях. В самом деле, химические реакции представляют собой процессы перестройки молекул, их распада на более простые части или, наоборот, возникновения более сложных молекул из более простых или из отдельных атомов (реакции анализа и синтеза). При этом существенно изменяются силы взаимодействия между атомами и соответственно энергии их взаимодействия. Кроме того, меняется характер как движения молекул, так и взаимодействия между ними, ибо молекулы вновь возникшего вещества взаимодействуют между собой иначе, чем молекулы исходных веществ.

4. При некоторых условиях ядра атомов испытывают превращения, которые называют ядерными реакциями. Независимо от механизма процессов, происходящих при этом (а они могут быть весьма различными), все они связаны со значительным изменением энергии взаимодействующих частиц. Следовательно, ядерные реакции сопровождаются изменением внутренней энергии тела, в состав которого входят эти ядра

5. Испарение

Переход вещества из жидкого состояния в газообразное называется парообразованием, а переход вещества из газообразного состояния в жидкое - конденсацией.

Одним из типов парообразования является испарение. Испарением называется парообразование, которое происходит только со свободной поверхности жидкости, граничащей с газообразной средой. Выясним, как объясняется испарение на основе молекулярно-кинетической теории.

Поскольку молекулы жидкости совершают хаотическое движение, среди молекул ее поверхностного слоя всегда найдутся такие молекулы, которые движутся по направлению от жидкости к газообразной среде. Однако далеко не все такие молекулы смогут вылететь из жидкости, так как на них действуют молекулярные силы, втягивающие их обратно в жидкость. Поэтому вырваться за пределы поверхностного слоя жидкости смогут только те из ее молекул, которые обладают достаточно большой кинетической энергией.

Действительно, когда молекула проходит через поверхностный слой, она должна выполнить работу против молекулярных сил за счет своей кинетической энергии. Те молекулы, кинетическая энергия которых меньше этой работы, втягиваются обратно в жидкость, а вырываются из жидкости только те молекулы, кинетическая энергия которых больше указанной работы. Вылетевшие из жидкости молекулы образуют пар над ее поверхностью. Поскольку вылетающие из жидкости молекулы приобретают кинетическую энергию в результате столкновений с другими молекулами жидкости, средняя скорость хаотического движения молекул внутри жидкости в процессе ее испарения должна уменьшаться. Таким образом, на превращение жидкой фазы вещества в газообразную должна затрачиваться определенная энергия. Находящиеся над поверхностью жидкости молекулы пара при своем хаотическом движении могут залететь обратно в жидкость и вернуть ей ту энергию, которую они унесли при испарении. Следовательно, при испарении всегда одновременно происходит и конденсация паров, сопровождающаяся увеличением внутренней энергии жидкости.

Какие причины влияют на скорость испарения, жидкости?

1. Если налить в одинаковые блюдца равные объемы воды, спирта и эфира и пронаблюдать за их испарением,то окажется,что первым испарится.эфир, затем спирт и последней испарится вода. Следовательно, быстрота

испарения зависит от рода жидкости.

2. Одна и та же жидкость испаряется тем быстрее, чем больше ее свободная поверхность. Например, если одинаковые объемы воды налить в блюдце и в стакан, то из блюдца вода испарится быстрее, чем из стакана.

3. Нетрудно заметить, что горячая вода испаряется быстрее холодной.

Причина этого ясна. Чем выше температура жидкости, тем больше средняя кинетическая энергия ее молекул и, следовательно, тем большее число их покидает жидкость за то же время.

4. Кроме того, скорость испарения жидкости тем больше, чем меньше внешнее давление на жидкость и чем меньше плотность пара этой жидкости над ее поверхностью.

Например, при ветре белье сохнет быстрее, чем в безветренную погоду, так как ветер уносит пары воды и этим способствует уменьшению конденсации пара на белье.

Поскольку на испарение жидкости затрачивается энергия за счет энергии ее молекул, температура жидкости в процессе испарения понижается. Именно поэтому заметно охлаждается рука, смоченная эфиром или спиртом. Этим же объясняется ощущение холода у человека, когда он после купанья в жаркий ветреный день выходит из воды.

Если жидкость испаряется медленно, то вследствие теплообмена с окружающими телами потери ее энергии компенсируются притоком энергии от окружающей среды, и ее температура фактически остается равной температуре среды. Однако при большой скорости испарения жидкости ее температура может оказаться значительно ниже температуры окружающей среды. С помощью «летучих» жидкостей, например эфира, можно получить значительное понижение температуры.

Отметим еще, что многие твердые вещества, минуя жидкую фазу, могут непосредственно переходить в газообразную фазу. Такое явление называется сублимацией, или возгонкой. Пахучесть твердых тел (например камфары, нафталина) объясняется их сублимацией (и диффузией). Сублимация характерна для льда, например, белье высыхает при температуре ниже 0° G.

6. Гидросфера и атмосфера Земли

1. Процессы испарения и конденсации воды играют определяющую роль в формировании погодно-климатических условий на нашей планете. В глобальном масштабе эти процессы сводятся к взаимодействию гидросферы и атмосферы Земли.

Гидросферу составляет вся имеющаяся на нашей планете вода во всех ее агрегатных состояниях; 94 % гидросферы приходится на Мировой океан, объем которого оценивается в 1,4 млрд. м3. Он занимает 71 % всей площади земной поверхности, и если бы твердая поверхность Земли была гладкой сферой, то вода покрывала бы ее сплошным слоем глубиной 2,4 км; 5,4 % гидросферы занимают подземные воды, а также ледники, атмосферная и почвенная влага. И только 0,6 % приходится на пресную воду рек, озер и искусственных водоемов. Отсюда ясно, какое значение имеет охрана пресной воды от загрязнений отходами промышленности и транспорта.

2. Атмосферу Земли принято делить на несколько слоев, каждый из которых обладает своими особенностями. Нижний, приземный, слой воздуха называют тропосферой. Ее верхняя граница в экваториальных широтах проходит на высоте 16-18 км, а в полярных - на высоте 10 км. В тропосфере содержится 90 % массы всей атмосферы, что составляет 4,8 1018 кг. Температура в тропосфере с высотой понижается. Сначала на 1 °С на каждые 100 м, а затем начиная с высоты 5 км температура опускается до -70 °С.

Давление и плотность воздуха непрерывно убывают. Самый внешний слой атмосферы на высоте около 1000 км постепенно переходит в межпланетное пространство.

3. Исследования показали, что каждые сутки с поверхности Мирового океана и других водоемов нашей планеты испаряется около 7·10 3 км 3 воды и примерно столько же выпадает в виде осадков.

Увлекаемый восходящими потоками воздуха водяной пар поднимается вверх, попадая в холодные слои тропосферы. По мере подъема пар становится насыщенным, а затем конденсируется, образуя дождевые капли и облака.

В процессе конденсации пара в атмосфере в среднем за сутки выделяется количество теплоты 1,6 ·10 22 Дж, что в десятки тысяч раз превосходит энергию, вырабатываемую на планете Земля за то же время. Эта энергия поглощается водой при ее испарении. Таким образом, между гидросферой и атмосферой Земли происходит непрерывный обмен не только веществом (круговорот воды), но и энергией.

III. ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ.

Для исследования процессов испарения и определения зависимости скорости испарения от различных условий был проведен ряд экспериментов.

Эксперимент 1. Исследование зависимости скорости испарения от температуры воздуха.

Материалы: Пластины стекла, 3% р-р перекиси водорода, растительное масло, спирт, вода, секундомер, термометр, холодильник.

Ход эксперимента: При помощи шприца мы наносим вещества на пластинки стекла и наблюдаем за испарением веществ.

Спирт Объем 0,5·10 -6 м 3

Температура воздуха: +24.

Результат эксперимента: для полного испарения жидкости потребовалось 3 часа;

Вода. Объем 0,5·10 -6 м 3

Температура воздуха: +24.

Результат эксперимента: для полного испарения жидкости потребовалось 5 часов;

Р-р перекиси водорода . Объем 0,5·10 -6 м 3

Температура воздуха: +24.

Результат эксперимента: для полного испарения жидкости потребовалось 8 часов;

Растительное масло. Объем 0,5·10 -6 м 3

Температура воздуха: +24.

Результат эксперимента: для полного испарения жидкости потребовалось 40 часов;

Меняем температуру воздуха. Помещаем стекла в холодильник.

Спирт. Объем 0,5·10 -6 м 3

Температура воздуха: +6.

Результат эксперимента: для полного испарения жидкости потребовалось 8 часа;

Вода. Объем 0,5·10 -6 м 3

Температура воздуха: +6.

Результат эксперимента: для полного испарения жидкости потребовалось 10 часов;

Р-р перекиси водорода. Объем 0,5·10 -6 м 3

Температура воздуха: +6.

Результат эксперимента: для полного испарения жидкости потребовалось 15 часов;

Растительное масло. Объем 0,5·10 -6 м 3

Температура воздуха: +6

Результат эксперимента: для полного испарения жидкости потребовалось 72 часа;

Вывод: По результатам исследования видно, что при различной температуре количество времени, необходимое для испарения одних и тех же веществ различно. Для одной и той же жидкости процесс испарения протекает значительно быстрее при более высокой температуре. Это доказывает зависимость исследуемого процесса от данного физического параметра. При уменьшении температуры увеличивается продолжительность процесса испарения и наоборот.

Эксперимент 2 . Исследование зависимости скорости процесса испарения от площади поверхности жидкости.

Цель: Исследовать зависимость процесса испарения от площади поверхности жидкости.

Материалы: Вода, спирт, часы, медицинский шприц, пластины стекла, линейка.

Ход эксперимента: Мы измеряем площадь поверхности по формуле: S=П·D 2 :4.

С помощью шприца наносим разные жидкости на пластину, придаем форму круга и наблюдаем за жидкостью до ее полного испарения. Температура воздуха в помещении остается неизменной (+24)

Спирт. Объем 0,5·10 -6 м 3

Площадь поверхности:0, 00422м 2

Результат эксперимента: для полного испарения жидкости потребовался 1 час;

Вода. Объем 0,5·10 -6 м 3

Результат эксперимента: для полного испарения жидкости потребовалось 2 часа;

Р-р перекиси водорода . Объем 0,5·10 -6 м 3

Площадь поверхности: 0, 00422 м 2

Результат эксперимента: для полного испарения жидкости потребовалось 4 часов;

Растительное масло. Объем 0,5·10 -6 м 3

Площадь поверхности: 0, 00422 м 2

Результат эксперимента: для полного испарения жидкости потребовалось 30 часов;

Меняем условия. Наблюдаем за испарением этих же жидкостей при другой площади поверхности.

Спирт. Объем 0,5·10 -6 м 3

Результат эксперимента: для полного испарения жидкости потребовался 3 час;

Вода. Объем 0,5·10 -6 м 3

Площадь поверхности: 0, 00283 м 2

Результат эксперимента: для полного испарения жидкости потребовалось 4 часа;

Р-р перекиси водорода . Объем 0,5·10 -6 м 3

Результат эксперимента: для полного испарения жидкости потребовалось 6 часов;

Растительное масло. Объем 0,5·10 -6 м 3

Площадь поверхности 0, 00283 м 2

Результат эксперимента: для полного испарения жидкости потребовалось 54 часов;

Вывод: Из результатов исследования следует, что из сосудов с различной площадью поверхности, испарение осуществляется в течении разного времени. Как видно из проведенных измерений, из сосуда с большей площадью поверхности данная жидкость испаряется быстрее, что доказывает зависимость исследуемого процесса от данного физического параметра. С уменьшением площади поверхности увеличивается продолжительность процесса испарения и наоборот.

Эксперимент 3. Исследование зависимости процесса испарения от рода вещества.

Цель: Исследовать зависимость процесса испарения от рода жидкости.

Приборы и материалы: Вода, спирт, растительное масло, раствор перекиси водорода, часы, медицинский шприц, пластины стекла.

Ход эксперимента. С помощью шприца мы наносим различные виды жидкости на пластины и наблюдаем за процессом до полного испарения. Температура воздуха остается неизменной. Температуры жидкостей одинаковы.

Результаты исследований разницы между испарением спирта, воды, 3% р-ра перекиси водорода, растительного масла мы получаем из данных предыдущих исследований.

Вывод: Для полного испарения различных жидкостей требуется разное количество времени. Из результатов видно, что процесс испарения протекает быстрее у спирта и воды, а медленнее у растительного масла, то есть служит доказательством зависимости процесса испарения от физического параметра- рода вещества.

Эксперимент 4. Исследование зависимости скорости испарения жидкости от скорости воздушных масс.

Цель: исследовать зависимость скорости процесса испарения от скорости ветра.

Приборы и материалы: Вода, спирт, растительное масло, р-р перекиси водорода, часы, медицинский шприц, пластины стекла, фен.

Ход работы. Создаем искусственное перемещение воздушных масс с помощью фена, наблюдаем за процессом, ждем до полного испарения жидкости. Фен имеет два режима: простой режим, турбо режим.

В случае простого режима:

Спирт. Объем: 0,5·10 -6 м 3

Площадь поверхности: 0, 00283 м 2 Результат эксперимента: для полного испарения жидкости потребовался около 2 минут;

Вода. Объем 0,5·10 -6 м 3

Площадь поверхности: 0, 00283 м 2

Результат эксперимента: для полного испарения жидкости потребовалось около 4 минут;

Р-р перекиси водорода. Объем: 0,5·10 -6 м 3

Площадь поверхности: 0, 00283 м 2

Результат эксперимента: для полного испарения жидкости потребовалось около 7 минут;

Растительное масло. Объем: 0,5·10 -6 м 3

Площадь поверхности: 0, 00283 м 2 Результат эксперимента: для полного испарения жидкости потребовалось около 10 минут;

В случае турбо режима:

Спирт. Объем: 0,5·10 -6 м 3

Площадь поверхности: 0, 00283 м 2 Результат эксперимента: для полного испарения жидкости потребовалось около 1минуты;

Вода. Объем:0,5·10 -6 м 3

Площадь поверхности: 0, 00283 м 2

Результат эксперимента: для полного испарения жидкости потребовалось около 3 минут;

Р-р перекиси водорода. Объем: 0,5·10 -6 м 3

Площадь поверхности: 0, 00283 м 2 Результат эксперимента: для полного испарения жидкости потребовалось около 5 минут;

Растительное масло. Объем: 0,5·10 -6 м 3

Площадь поверхности: 0, 00283 м 2

Результат эксперимента: для полного испарения жидкости потребовалось около 8 минут;

Вывод: Процесс испарения зависит от скорости перемещения воздушных масс над поверхностью жидкости. Чем больше скорость, тем данный процесс протекает быстрее и наоборот.

Итак, исследования показали,что интенсивность испарения жидкости различна у разных жидкостей и увеличивается при увеличении температуры жидкости, увеличении её площади свободной поверхности,наличия ветра над её поверхностью.

Заключение.

В результате выполнения работы были изучены различные источники информации по вопросу процесса испарения и условий его протекания. Определены физические параметры, оказывающие влияние на скорость протекания процесса испарения. Была исследована зависимость протекания процесса испарения от физических параметров, проведен анализ полученных результатов. Высказанная гипотеза оказалась справедливой. Теоретические предположения были подтверждены в процессе исследований - зависимость скорости протекания процесса испарения от физических параметров заключается в следующем:

С увеличением температуры жидкости увеличивается скорость протекания процесса испарения и наоборот;

С уменьшением площади свободной поверхности жидкости уменьшается скорость протекания процесса испарения и наоборот;

Скорость протекания процесса испарения зависит от рода жидкости.

Таким образом, процесс испарения жидкостей зависит от таких физических параметров как температура, площадь свободной поверхности и род вещества.

Данная работа имеет практическое значение, так как в ней исследована зависимость интенсивности испарения - явления, с которым мы встречаемся в повседневной жизни, от физических параметров. Используя эти знания, можно контролировать протекание процесса.

Литература

Пинский А. А., Граковский Г.Ю.Физика:Учебник для студентов учреждений

Среднего прфессионального образования/Под общ. Ред. Ю.И.Дика, Н.С.Пурышевой.-М.:ФОРУМ:ИНФРА_М,2002.-560 с.

Милковская Л.Б.Повторим физику.Учеб.пособие для поступающих в вузы.М.,»Высшая школа»,1985.608 с.

Интернет-ресурсы: http://ru.wikipedia.org/wiki/ ;

http://class-fizika.narod.ru/8_l 3.htm ;

http://e-him.ru/?page=dynamic§ion=33&article=208 ;

Учебник по физике Г.Я. Мякишев « Термодинамика»

Отдел образования, молодежной политики, физической культуры и спорта

администрации Моргаушского района

Муниципальное образовательное учреждение

«Кашмашская основная общеобразовательная школа»

Исследовательская работа

Тема : «Испарение»

МОУ «Кашмашская ООШ»

Зайцевой Виктории

Руководитель:

д. Кашмаши - 2010

Введение

Основная часть:

Заключение

Приложение

Литература

Введение

Актуальность темы:

В природе вода постоянно испаряется с поверхности морей, рек, озёр, почвы. Она в виде пара поднимается высоко вверх. Пар охлаждается там и образует множество водяных капелек или крошечных льдинок. Из этих капелек и льдинок образуются облака. Из облака вода возвращается на землю в виде дождя и снега.

Проблема темы:

Почему мокрое бельё сохнет, вода, налитая на пол, исчезает?

Объект темы:

Процесс испарения веществ

Предмет темы:

Жидкости и пары

Цель работы: исследование процесса испарения в бытовых условиях.

Задачи работы:

1. Изучить литературу по теме работы;

2. Опытным путем доказать, как происходит процесс испарения;

3. Выявить причины, влияющие на процессы испарения.

Методы:

Изучение литературы;

Наблюдение;

Глава I Испарение

Испарение – это процесс, при котором жидкость постепенно переходит в воздух в форме пара или газа.

Все жидкости испаряются, но с разной скоростью.

Когда жидкость подогрета, испарение происходит быстрее – в теплой жидкости скорость движения молекул больше, больше молекул имеет шанс покинуть жидкость.

Чем больше поверхность испаряющейся жидкости, тем быстрее происходит испарение. Вода в круглой сковородке испариться быстрее, чем в высоком кувшине.

Смочив руку какой-нибудь быстро испаряющейся жидкостью (спирт, духи), можно почувствовать сильное охлаждение смоченного места. Охлаждение усилиться если на руку подуть.

Круговорот воды в природе

В сильную жару реки, пруды и озера мелеют, вода испаряется, то есть из жидкого состояния переходит в газообразное -- превращается в невидимый пар. В течении дня, вода луж, прудов, озер, рек, морей, влага, содержащаяся в растениях нагревается Солнцем и испаряется, причем тем скорее, чем сильнее нагрета. Можно заметить это, если две одинаковые тарелки наполнить разным количеством воды и одну из них выставить на солнцепек, а другую поместить в тень. Там где вода нагревается солнечными лучами, она будет испаряться заметно быстрее. Ускоряет испарение и ветер. Влажный лист бумаги на ветру высохнет быстрее, чем оставленный там, где воздух спокоен и неподвижен.

В жаркие сухие дни человек потеет, но пот мало его беспокоит: он мгновенно высыхает. А когда стоит влажная жара, то от пота намокает даже одежда. Но если влага постоянно испаряется из морей, рек, озер, если она уходит из растений и исчезает в атмосфере, то почему же тогда Земля не высыхает?

Это не случается потому, что вода совершает постоянный круговорот. Испарившись, она поднимается вместе с нагретым воздухом, принимая форму мельчайших капелек.

Вывод:

Процесс испарения – это очень интересное явление, его интересно наблюдать и отмечать, как оно часто встречается в нашей жизни.

Я думаю, что наука еще не раз использует процесс испарения для пользы человека и нашей планеты.

Глава II Практические опыты

Скорость испарения зависит от:

1) площади поверхности жидкости;

2) температуры;

3) движения молекул над поверхностью жидкости (ветер);

4) рода вещества;

1. Зависимость испарения от площади испаряемой поверхности, если температура жидкости одинакова.

Ход опыта:

Нальем одинаковое количество воды в стакан и блюдце. Оставим до утра.

На следующее утро мы видим, что вода в блюдце испарилась (объем жидкости стал меньше), а в стакане вода ещё есть.

Вывод: Чем больше поверхность испаряющийся жидкости, тем быстрее происходит испарение, так как количество испаряющихся молекул будет больше на большей площади.

2. Зависимость испарения от температуры

Ход опыта:

Я взяла 2 одинаковых сосуда, в один из которых налила холодную воду, а в другой – горячую. Уровень воды был одинаковый. Через некоторое время в сосуде, где была горячая вода, жидкости стало меньше.

Вывод : Чем выше температура, тем больше скорость испарения

3. Зависимость испарения от ветра.

Ход опыта:

Скорость испарения зависит от движения воздуха над свободной поверхностью жидкости. Когда мы создаем ветер, испарение происходит быстрее

На 2 листа бумаги нанесем одинаковое количество воды. Над одним листом будем создавать тетрадью или феном ветер.

Вывод: Если воздух над жидкостью движется, скорость испарения увеличивается, так как поток воздуха помогает молекулам жидкости оторваться от поверхности и перейти в парообразное состояние. Горячий воздух ускорит этот процесс.

Зависимость испарения от рода вещества.

Ход опыта:

Для проведения данного опыта я взяла две бумажные салфетки. На первую налила немножко воды, а на вторую брызнула духи. Затем я стала наблюдать за испарением жидкостей.

Быстрее всего испарились духи, не оставив следа на салфетке. Остался только приятный запах. Вторым испарилась вода.

Вывод: Я думаю, разные жидкости имеют разную скорость испарения.

5. Это интересно!

Ход опыта:

На тыльную сторону ладони нанесла тонкий слой духов. При испарении духов с руки почувствовала холод.

Вывод: Значит, для испарения жидкости необходим постоянный приток энергии от ладони.

6. Это интересно!

Ход опыта:

Одну половину доски я вытерла мокрой-мокрой тряпкой, а другую чуть-чуть мокрой тряпкой. Вторая половина доски у меня высохла, а первая всё ещё оставалась мокрой.

Вывод: Значит доску надо вытирать более сухой тряпкой

Выводы:

Работая над темой «Испарение», я нашла ответы на свои вопросы. Я узнала, почему мокрое бельё сохнет, вода, налитая на пол, исчезает.

Скорость испарения жидкости зависит от площади свободной поверхности жидкости. Чем больше площадь испарения, тем быстрее происходит испарение.

Скорость испарения зависит от температуры жидкости. Чем выше температура жидкости, тем быстрее происходит испарение.

Скорость испарения зависит от движения воздуха над свободной поверхностью жидкости.

Скорость испарения зависит от рода взятой жидкости.

Заключение

Работая над темой испарение, я нашла ответы на свои вопросы. Я узнала, как происходит испарение, что скорость испарения веществ различна. Люди активно используют процесс испарения в своей жизни, применяют его в производстве различных механизмов и машин, используют в быту. В природе этот процесс происходит вне зависимости от деятельности человека и задача людей – не нарушать этот процесс. Для этого необходимо любить природу и любить нашу Землю! Опыты, которые я провела, были очень интересными, и я думаю, что можно провести еще много других опытов по этой теме. Сейчас я всегда обращаю внимание на испарение, происходящее в природе или в жизни человека, и я рада, что уже так много знаю о нем!

Приложение 1

Процесс испарения в жизни человека.

    Испарение иногда бывает опасно. Например: если у вас разбился градусник, то из него может вылиться ртуть, которая быстро испаряется. Её пары очень опасны и ядовиты для человека. Бензин также опасен своими парами: розлив бензина и случайная искра может привести к мгновенному взрыву и пожару. На кухне хозяйка часто использует процесс испарения для приготовления и сохранения пищи. Например: образующийся внутри кастрюли-скороварки пар давит на воду, вследствие чего она закипает при более высокой температуре и пища готовиться быстрее.
    Процесс испарения часто используют при стерилизации посуды для консервирования продуктов.
    При простуде люди часто используют процесс испарения при проведении ингаляций лекарственными травами.
    Ощущать долго аромат духов люди могут только благодаря испарению, сначала с поверхности кожи испаряется спирт, а затем и менее летучие ароматические вещества, которые продолжают напоминать о человеке даже, когда он ушел.
    Процесс испарения с помощью горячей струи воздуха позволяет создавать красивые прически. Работа парикмахера без фена невозможна!

Процесс испарения в природе

    Реки растворяют в своих водах множество химических веществ, содержащихся в горных породах, и уносят их в море. Одно из таких веществ – обыкновенная соль, которую мы употребляем в пищу. Когда морская вода испаряется, растворенная в ней соль остается в море. Вот почему моря такие соленые.
    Когда водяные капельки в облаке встречаются с массой теплого воздуха, они испаряются – и облако исчезает! Поэтому облака постоянно меняют свою форму. Содержащаяся в них влага постоянно превращается то в воду, то в пар. Капли воды, содержащиеся в облаке, имеют вес, поэтому тяготение тянет их вниз, и они отпускаются все ниже и ниже. Когда основная их часть, падая, достигает более теплых воздушных слоев, этот теплый воздух заставляет их испаряться. Так получаются облака, из которых не льется дождь. Они испаряются, и капли не успевают достичь земной поверхности.

В природе вещества могут быть в одном из трех агрегатных состояний: твердом, жидком и газообразном. Переход из первого во второе и наоборот можно наблюдать ежедневно, особенно зимой. Однако превращение жидкости в пар, которое известно как процесс испарения, часто не видно глазу. При кажущейся незначительности оно играет важную роль в жизни человека. Итак, давайте узнаем об этом подробнее.

Испарение - это что такое

Каждый раз, решив вскипятить чайник для чая или кофе, можно наблюдать, как, достигнув 100 °С, вода превращается в пар. Именно это и является практическим примером процесса парообразования (перехода определенного вещества в газообразное состояние).

Парообразование бывает двух видов: кипение и испарение. На первый взгляд они идентичны, но это распространенное заблуждение.

Испарение - это парообразование с поверхности вещества, а кипение - со всего его объема.

Испарение и кипение: в чем разница

Хотя и процесс испарения, и кипение, оба способствуют переходу жидкости в газообразное состояние, стоит помнить о двух важных отличиях между ними.

  • Кипение - это активный процесс, который происходит при определенной температуре. Для каждого вещества она уникальна и может меняться только при понижении атмосферного давления. При нормальных условиях для кипения воды нужно 100 °С, для рафинированного подсолнечного масла - 227 °С, для нерафинированного - 107 °С. Спирту, чтобы закипеть, наоборот, нужна более низкая температура - 78 °С. Температура же испарения может быть любой и оно, в отличие от кипения, происходит постоянно.
  • Вторым существенным отличием между процессами является то, что при кипении парообразование происходит по всей толще жидкости. Тогда как испарение воды или других веществ происходит только с их поверхности. Кстати, процесс кипения всегда одновременно сопровождается и испарением.

Процесс сублимации

Считается, что испарение - это переход из жидкого в газообразное агрегатное состояние. Однако в редких случаях, минуя жидкое, возможно испарение прямо из твердого состояния в газообразное. Такой процесс называется сублимацией.

Это слово знакомо всем, кто хоть раз заказывал кружку или футболку с любимой фотографией в фотосалоне. Для перманентного нанесения изображения на ткань или керамику как раз и используется этот вид испарения, в честь него печать такого рода называется сублимационной.

Также такое испарение часто используется для промышленной сушки фруктов и овощей, изготовления кофе.

Хотя сублимация встречается намного реже, нежели испарение жидкости, иногда ее можно наблюдать в быту. Так, вывешенное сушиться зимой постиранное влажное белье - мгновенно замерзает и становится твердым. Однако постепенно эта жесткость уходит, и вещи становятся сухими. В данном случае вода из состояния льда, минуя жидкую фазу, переходит сразу в пар.

Как происходит испарение

Как и большинство физических и химических процессов, главную роль в процессе испарения играют молекулы.

В жидкостях они расположены очень близко друг к другу, но при этом они не имеют фиксированного места расположения. Благодаря этому они могут «путешествовать» по всей площади жидкости, причем с разными скоростями. Это достигается благодаря тому, что во время движения они сталкиваются между собой и от этих столкновений их скорость меняется. Став достаточно быстрыми, самые активные молекулы получают возможность подняться на поверхность вещества и, преодолев силу притяжения других молекул, покинуть жидкость. Так происходит испарение воды или другого вещества и образуется пар. Не правда ли, немного напоминает полет ракеты в космос?

Хотя из жидкости в пар переходят самые активные молекулы, однако оставшиеся их «собратья» продолжают пребывать в постоянном движении. Постепенно и они приобретают необходимую скорость, чтобы преодолеть притяжение и перейти в другое агрегатное состояние.

Постепенно и постоянно покидая жидкость, молекулы задействуют для этого ее внутреннюю энергию и она уменьшается. А это напрямую влияет на температуру вещества - она понижается. Именно поэтому количество остывающего чая в чашке немного уменьшается.

Условия испарения

Наблюдая за лужами после дождя, можно заметить, что некоторые из них высыхают быстрее, а некоторые дольше. Поскольку их высыхание является процессом испарения, то можно на данном примере разобраться с условиями, необходимыми для этого.

  • Скорость испарения зависит от типа испаряемого вещества, ведь каждое из них имеет уникальные особенности, влияющие на время, за которое его молекулы полностью перейдут в газообразное состояние. Если оставить открытыми 2 идентичных флакона, наполненных одинаковым количеством жидкости (в одном спирт С2Н5ОН, в другом - вода Н2О), то первая емкость опустеет быстрее. Поскольку, как уже было сказано выше, температура испарения у спирта ниже, а значит, он быстрее испарится.
  • Второе, от чего зависит испарение, - температура окружающей среды и температура кипения испаряемого вещества. Чем выше первая и ниже вторая, тем быстрее жидкость сможет ее достигнуть и перейти в газообразное состояние. Именно поэтому при проведении некоторых химических реакций с участием испарения вещества специально нагреваются.
  • Еще одним условием, от чего зависит испарение, является площадь поверхности вещества, с которого оно происходит. Чем она больше, тем быстрее происходит процесс. Рассматривая различные примеры испарения, можно снова вспомнить о чае. Его часто переливают в блюдце, чтобы охладить. Там напиток быстрее остывал, потому что увеличивалась площадь поверхности жидкости (диаметр блюдца больше диаметра чашки).
  • И снова о чае. Известен еще одни способ быстрее его остудить - подуть на него. Каким образом можно заметить, что наличие ветра (движения воздуха) - это то, от чего также зависит испарение. Чем выше скорость ветра, тем быстрее молекулы жидкости перейдут в пар.
  • Также влияет на интенсивность испарения атмосферное давление: чем оно ниже, тем быстрее молекулы переходят из одного состояния в другое.

Конденсация и десублимация

Превратившись в пар, молекулы не перестают двигаться. В новом агрегатном состоянии они начинают сталкиваться с молекулами воздуха. Из-за этого иногда они могут возвращаться в жидкое (конденсация) или твердое (десублимация) состояние.

Когда процессы испарения и конденсации (десублимации) равносильны между собой, это называют динамическим равновесием. Если газообразное вещество находится в динамическом равновесии со своей жидкостью аналогичного состава, его называют насыщенным паром.

Испарение и человек

Рассматривая различные примеры испарения, нельзя не вспомнить влияние этого процесса на организм человека.

Как известно, при температуре тела 42,2 °С белок в крови человека сворачивается, что ведет к смерти. Нагреваться человеческое тело может не только из-за инфекции, но и при выполнении физического труда, занятий спортом или во время пребывания в жарком помещении.

Организму удается сохранить приемлемую для нормальной жизнедеятельности температуру, благодаря системе самоохлаждения - потоотделению. Если температура тела повышается, через поры кожи выделяется пот, а потом происходит его испарение. Этот процесс помогает «сжечь» лишнюю энергию и способствует охлаждению организма и нормализации его температуры.

Кстати, именно поэтому не стоит безоговорочно верить рекламам, которые преподносят пот как главное бедствие современного общества и пытаются продать наивным покупателям всевозможные вещества для избавления от него. Заставить организм меньше потеть, не нарушая его нормальной работы, нельзя, а хороший дезодорант способен лишь маскировать неприятный запах пота. Поэтому, используя антиперспиранты, различные присыпки и пудры, можно нанести организму непоправимый вред. Ведь эти вещества забивают поры или сужают выводные протоки потовых желез, а значит, лишают тело возможности контролировать свою температуру. В случаях, если использование антиперспирантов все же необходимо, предварительно стоит проконсультироваться с врачом.

Роль испарения в жизни растений

Как известно, не только человек на 70% состоит из воды, но и растения, а некоторые, вроде редиса, и на все 90%. Поэтому испарение также важно и для них.

Вода является одним из главных источников попадания полезных (и вредных тоже) веществ в организм растения. Однако, чтобы эти вещества могли усвоиться, необходим солнечный свет. Вот только в жаркие дни солнце способно не просто нагреть растение, но и перегреть, тем самым погубив его.

Чтобы этого не произошло, представители флоры способны самоохлаждаться (похоже на человеческий процесс потоотделения). Иными словами при перегреве растения испаряют воду и таким образом охлаждаются. Поэтому поливу садов и огородов уделяется летом так много внимания.

Как используют испарение в промышленности и в быту

Для химической и пищевой промышленности испарение - это незаменимый процесс. Как уже было сказано выше, оно не только помогает производить дегидратацию многих продуктов (испарять влагу из них), что увеличивает срок их хранения; но также помогает изготавливать идеальные диетические продукты (меньше веса и калорий, при большем содержании полезных веществ).

Также испарение (в особенности сублимация) используется для очистки различных веществ.

Еще одной сферой применения является кондиционирование воздуха.

Не стоит забывать и о медицине. Ведь процесс ингаляции (вдыхание пара, насыщенного лечебными препаратами) основан тоже на процессе испарения.

Опасные испарения

Однако, как и у всякого процесса, у этого есть и негативные стороны. Ведь превращаться в пар и вдыхаться людьми и животными могут не только полезные вещества, но и смертельно опасные. А самое печальное в том, что они - невидимы, а значит, человек не всегда знает, что подвергся воздействию токсина. Именно поэтому стоит избегать пребывания без защитных масок и костюмов, на заводах и предприятиях, работающих с опасными веществами.

К сожалению, вредные испарения могут подстерегать и дома. Ведь если мебель, обои, линолеум или другие предметы изготовлены из дешевых материалов с нарушениями технологии, они способны выделять токсины в воздух, которые и будут постепенно «травить» своих хозяев. Поэтому при покупке любой вещи, стоит просматривать сертификат качества материалов, из которых она изготовлена.

Солнечная энергия приводит в действие невероятно сильную тепловую машину, которая, преодолевая гравитацию, без труда поднимает в воздух огромных размеров куб (каждая сторона составляет около восьмидесяти километров). Таким образом, с поверхности нашей планеты за год испаряется водяной слой метр толщиной.

Во время испарения жидкое вещество постепенно переходит в паро- или газообразное состояние после того, как мельчайшие частицы (молекулы или атомы), двигаясь на скорости, достаточной для того, чтобы преодолеть силы сцепления между частицами, отрываются от поверхности.

Несмотря на то, что процесс испарения известен больше как переход жидкого вещества в пар, существует сухое испарение, когда при минусовой температуре лёд переходит из твёрдого состояния в парообразное, минуя жидкую фазу. Например, если выстиранное сырое бельё развесить сушиться на морозе, оно, замерзнув, становится очень жёстким, но через какое-то время, размягчившись, становится сухим.

Как улетучивается жидкость

Молекулы жидкости расположены друг к другу практически впритык, и, несмотря на то, что связаны между собой силами притяжения, к определённым точкам не привязаны, а потому свободно перемещаются по всей площади вещества (они постоянно сталкиваются друг с другом и изменяют свою скорость).

Частицы, что уходят на поверхность, набирают во время движения темп, достаточный для того, чтобы покинуть вещество. Оказавшись наверху, своё движение они не останавливают и, преодолев притяжение нижних частиц, вылетают из воды, преобразовываясь в пар. При этом часть молекул из-за хаотического движения возвращается в жидкость, остальные уходят дальше, в атмосферу.

Испарение на этом не заканчивается, и на поверхность вырываются следующие молекулы (так происходит до тех пор, пока жидкость полностью не улетучивается).

Если речь идёт, например, о круговороте воды в природе, можно наблюдать за процессом конденсации, когда пар, сконцентрировавшись, при определённых условиях возвращается назад. Таким образом, испарение и конденсация в природе тесно связаны между собой, поскольку благодаря им осуществляется постоянный водообмен между землёй, сушей и атмосферой, благодаря чему окружающая среда снабжается огромным количеством полезных веществ.

Стоит заметить, что интенсивность испарения у каждого вещества различна, а потому основными физическими характеристиками, которые влияют на скорость испарения, являются:

  1. Плотность. Чем вещество плотнее, тем ближе молекулы находятся по отношению друг к другу, тем труднее верхним частицам преодолеть силу притяжения других атомов, следовательно, испарение жидкости происходит медленнее. Например, метиловый спирт улетучивается намного быстрее воды (метиловый спирт – 0,79 г/см3, вода – 0,99 г/см3).
  2. Температура. На скорость испарения также влияет теплота испарения. Несмотря на то, что процесс испарения происходит даже при минусовой температуре, чем больше температура вещества, тем выше теплота испарения, значит, тем быстрее двигаются частицы, которые, увеличивая интенсивность испарения, массово покидают жидкость (поэтому кипящая вода испаряется быстрее холодной).Из-за потери быстрых молекул внутренняя энергия жидкости уменьшается, а потому температура вещества во время испарения понижается. Если жидкость в это время будет находиться возле источника тепла или непосредственно нагреваться, её температура снижаться не будет, так же, как и не снизится интенсивность испарения.
  3. Площадь поверхности. Чем большую площадь поверхности занимает жидкость, тем больше молекул с неё улетучивается, тем выше скорость испарения. Например, если влить воду в кувшин с узким горлышком, жидкость будет исчезать очень медленно, поскольку испаряемые частицы начнут оседать на сужающихся стенках и спускаться. В то же время, если налить воду в миску, молекулы будут беспрепятственно уходить с поверхности жидкости, поскольку им будет не на чем конденсироваться, дабы вернуться в воду.
  4. Ветер. Процесс испарения окажется намного быстрее, если над ёмкостью, в которой находится вода, движется воздух. Чем быстрее он это делает, тем скорость испарения больше. Нельзя не учитывать взаимодействие ветра с испарением и конденсацией.Молекулы воды, поднимаясь с океанической поверхности, частично возвращаются назад, но большая часть высоко в небе конденсируется и образует облака, которые ветер перегоняет на сушу, где капли выпадают в виде дождя и, проникнув в грунт, через какое-то время возвращаются в океан, снабжая растущую в почве растительность влагой и растворёнными минеральными веществами.

Роль в жизни растений

Значение испарения в жизни растительности трудно переоценить, особенно учитывая, что живое растение на восемьдесят процентов состоит из воды. Поэтому если растению не хватает влаги, оно может погибнуть, так как вместе с водой в него не будут поступать также нужные для жизнедеятельности питательные вещества и микроэлементы.

Вода, передвигаясь по растительному организму, переносит и образует внутри него органические вещества, для образования которых растение нуждается в солнечном свете.

А вот тут немаловажная роль отводится испарению, так как солнечные лучи имеют способность чрезвычайно сильно нагревать предметы, а потому способны вызвать гибель растения от перегрева (особенно в жаркие летние дни). Чтобы этого избежать, происходит испарение воды листьями, через которые в это время выделяется много жидкости (например, из кукурузы за сутки испаряется от одного до четырёх стаканов воды).


Это значит, что чем больше в организм растения поступит воды, тем испарение воды листьями будет интенсивнее, растение будет больше охлаждаться и нормально расти. Испарение воды растениями можно ощутить, если во время прогулки в знойный день прикоснуться к зелёным листьям: они обязательно окажутся прохладными.

Связь с человеком

Не менее велика роль испарения в жизнедеятельности человеческого организма: он борется с нагреванием посредством потоотделения. Испарение происходит обычно через кожу, а также через дыхательные пути. Это можно легко заметить во время болезни, когда температура тела поднимается или в период занятий спортом, когда повышается интенсивность испарения.

Если нагрузка невелика, из организма уходит от одного до двух литров жидкости в час, при более интенсивном занятии спортом, особенно когда температура внешней среды превышает 25 градусов, интенсивность испарения увеличивается и с потом может выйти от трёх до шести литров жидкости.

Через кожу и дыхательные пути вода не только покидает организм, но и поступает в него вместе с испарениями окружающей среды (не зря своим пациентам врачи часто прописывают отдых на море). К сожалению, вместе с полезными элементами в него нередко попадают и вредные частицы, среди них – химические вещества, вредные испарения, которые наносят здоровью непоправимый ущерб.

Одни из них токсичны, другие, вызывают аллергию, третьи – канцерогенны, четвёртые вызывают онкологические и другие не менее опасные заболевания, при этом многие обладают сразу несколькими вредными свойствами. Вредные испарения оказываются в организме в основном через органы дыхания и кожу, после чего, оказавшись внутри, моментально всасываются в кровь и разносятся по всему телу, оказывая токсическое воздействие и вызывая серьёзные заболевания.

В данном случае много зависит от местности, где обитает человек (возле фабрики или завода), помещения, в котором живёт или работает, а также времени пребывания в опасных для здоровья условиях.

Вредные испарения могут попадать в организм из предметов быта, например, линолеума, мебели, окон и пр. Дабы сохранить жизнь и здоровье, таких ситуаций желательно избегать и наилучшим выходом будет покинуть опасную территорию, вплоть до обмена квартиры или работы, а при обустройстве жилища обращайте внимание на сертификаты качества покупаемых материалов.



Вверх