Производство, передача и потребление электроэнергии. Производство и использование электрической энергии

Производство электроэнергии в мире в наши дни играет огромную роль. Она - стержень государственной экономики любой страны. Гигантские суммы денег ежегодно вкладываются в производство и использование электроэнергии и научные исследования, связанные с этим. В повседневной жизни мы постоянно сталкиваемся с ее действием, поэтому современный человек должен иметь представление об основных процессах ее выработки и потребления.

Как получают электроэнергию

Производство электроэнергии осуществляется из других ее видов при помощи специальных устройств. Например, из кинетической. Для этого применяют генератор - прибор, преобразующий механическую работу в электрическую энергию.

Другие существующие способы ее получения - это, например, преобразование излучения светового диапазона фотоэлементами или солнечной батареей. Или производство электроэнергии путем химической реакции. Или использование потенциала радиоактивного распада либо теплоносителя.

Вырабатывают ее на электростанциях, которые бывают гидравлическими, атомными, тепловыми, солнечными, ветряными, геотермальными и проч. В основном все они работают по одной схеме - благодаря энергии первичного носителя определенным устройством вырабатывается механическая (энергия вращения), передаваемая затем в специальный генератор, где и вырабатывается электроток.

Основные виды электростанций

Производство и распределение электроэнергии в большинстве стран ведутся путем строительства и эксплуатации ТЭС - тепловых электростанций. Их функционирование требует большого запаса органического топлива, условия добычи которого из года в год усложняются, а стоимость растет. Коэффициент полезной отдачи топлива в ТЭС не слишком высок (в пределах 40%), а число экологически грязных отходов велико.

Все эти факторы снижают перспективность такого способа выработки.

Наиболее экономично производство электроэнергии гидроэнергетическими установками (ГЭС). КПД их доходит до 93%, себестоимость 1 кВт/ч впятеро дешевле других способов. Природный источник энергии таких станций практически неисчерпаем, количество работников - минимально, ими легко управлять. По развитию данной отрасли наша страна - признанный лидер.

К сожалению, темпы развития ограничены серьезными затратами и длительными сроками строительства ГЭС, связанными с их удаленностью от больших городов и магистралей, сезонным режимом рек и трудными условиям работы.

Кроме того, гигантские водохранилища ухудшают экологическую ситуацию - затапливают ценные земли вокруг водоемов.

Использование атомной энергии

В наши дни производство, передача и использование электроэнергии производятся атомными электростанциями - АЭС. Они устроены практически по тому же принципу, что и тепловые.

Главный их плюс - малое количество требующегося топлива. Килограмм обогащенного урана по своей производительности эквивалентен 2,5 тыс. тонн угля. Именно поэтому АЭС теоретически можно строить в любом районе независимо от наличия близлежащих топливных ресурсов.

В настоящее время запасы урана на планете значительно больше, чем минерального горючего, а воздействие АЭС на окружающую природу минимально при условии безаварийной работы.

Огромный и серьезный недостаток АЭС - вероятность страшной аварии с непредсказуемыми последствиями, отчего для их бесперебойной работы требуются очень серьезные меры по обеспечению безопасности. К тому же производство электроэнергии на АЭС регулируется с трудом - как для их запуска, так и для полной остановки понадобится несколько недель. И практически отсутствуют технологии утилизации опасных отходов.

Что такое электрический генератор

Производство и передача электроэнергии осуществимы благодаря электрогенератору. Это устройство преобразования любых видов энергии (тепловой, механической, химической) в электрическую. Принцип его действия построен на процессе электромагнитной индукции. ЭДС индуктируется в проводнике, который движется в магнитном поле, пересекает его силовые магнитные линии. Таким образом, проводник может служить источником электроэнергии.

Основа любого генератора - система электромагнитов, формирующих магнитное поле, и проводников, которые его пересекают. Большинство всех генераторов переменного тока основаны на применении вращающегося магнитного поля. Его неподвижную часть именуют статором, подвижную - ротором.

Понятие трансформатора

Трансформатор - электромагнитное статическое устройство, предназначенное для преобразования одной системы тока в другую (вторичную) при помощи электромагнитной индукции.

Первые трансформаторы в 1876 г. были предложены П. Н. Яблочковым. В 1885 г. венгерскими учеными разработаны промышленные однофазные приборы. В 1889-1891 гг. изобретен трехфазный трансформатор.

Простейший однофазный трансформатор состоит из стального сердечника и пары обмоток. Применяются они для распределения и передачи электроэнергии, ведь генераторы электростанций вырабатывают ее при напряжении от 6 до 24 кВт. Передавать ее выгодно при больших значениях (от 110 до 750 кВт). Для этого на электростанциях устанавливают повышающие трансформаторы.

Как используется электроэнергия

Ее львиная доля идет на снабжение электричеством предприятий промышленности. Производство потребляет до 70% всей вырабатываемой в стране электроэнергии. Эта цифра значительно разнится для отдельных регионов в зависимости от климатических условий и уровня индустриального развития.

Другая статья расходов - снабжение электротранспорта. От электросетей ЭЭС работают подстанции городского, междугороднего, промышленного электротранспорта, использующего постоянный ток. Для транспорта на переменном токе применяются понижающие подстанции, которые тоже потребляют энергию электростанций.

Другой сектор потребления электроэнергии - коммунально-бытовое снабжение. Потребителями здесь являются здания жилых районов любых населенных пунктов. Это дома и квартиры, административные здания, магазины, заведения образования, науки, культуры, здравоохранения, общественного питания и т. д.

Как происходит передача электроэнергии

Производство, передача и использование электроэнергии - три кита отрасли. Причем передать полученную мощность потребителям - самая сложная задача.

"Путешествует" она главным образом посредством ЛЭП - воздушных линий электропередачи. Хотя все чаще начинают применять кабельные линии.

Вырабатывается электроэнергия мощными агрегатами гигантских электростанций, а потребителями ее служат относительно небольшие приёмники, разбросанные по обширной территории.

Существует тенденция концентрировать мощности, связанная с тем, что с их увеличением уменьшаются относительные затраты возведения электростанций, а следовательно, и себестоимость получаемого киловатт-часа.

Единый энергокомплекс

На принятие решения о размещении крупной электростанции влияет ряд факторов. Это вид и количество имеющихся в наличии ресурсов, доступность транспортировки, климатические условия, включенность в единую энергосистему и т. д. Чаще всего электростанции строятся вдали от крупных очагов потребления энергии. Эффективность ее передачи на немалые расстояния влияет на успешную работу единого энергетического комплекса огромной территории.

Производство и передача электроэнергии должны происходить с минимальным количеством потерь, главная причина которых - нагрев проводов, т. е. увеличение внутренней энергии проводника. Для сохранения передаваемой на большие расстояния мощности нужно пропорционально увеличить напряжение и уменьшить в проводах силу тока.

Что такое ЛЭП

Математические расчеты показывают, что величина потерь в проводах на нагрев обратно пропорциональна квадрату напряжения. Именно поэтому электроэнергию на большие расстояния передают при помощи ЛЭП - высоковольтных линий электропередач. Между их проводами напряжение исчисляется десятками, а порой сотнями тысяч вольт.

Электростанции, расположенные неподалеку друг от друга, объединяются в единую энергосистему именно при помощи ЛЭП. Производство электроэнергии в России и ее передача ведутся путем централизованной энергетической сети, в которую входит огромное количество электростанций. Единое управление системой гарантирует постоянную подачу потребителям электроэнергии.

Немного истории

Как формировалась единая электрическая сеть в нашей стране? Попробуем заглянуть в прошлое.

До 1917 года производство электроэнергии в России велось недостаточными темпами. Страна отставала от развитых соседей, что отрицательно сказывалось на экономике и обороноспособности.

После Октябрьской революции проект электрификации России разрабатывался Государственной комиссией по электрификации России (сокращенно ГОЭЛРО), возглавляемой Г. М. Кржижановским. С ней сотрудничали более 200 ученых и инженеров. Контроль осуществлялся лично В. И. Лениным.

В 1920 г. был готов «План электрификации РСФСР», рассчитанный на 10-15 лет. Он включал восстановление прежней энергосистемы и строительство 30 новых электростанций, оборудованных современными турбинами и котлами. Главная идея плана - задействовать гигантские отечественные гидроэнергоресурсы. Предполагались электрификация и коренная реконструкция всего народного хозяйства. Упор делался на рост и развитие тяжёлой промышленности страны.

Знаменитый план ГОЭРЛО

Начиная с 1947 года СССР стал первым в Европе и вторым в мире производителем электроэнергии. Именно благодаря плану ГОЭЛРО была сформирована в кратчайшие сроки вся отечественная экономика. Производство и потребление электроэнергии в стране вышло на качественно новый уровень.

Выполнение намеченного стало возможным благодаря сочетанию сразу нескольких важных факторов: высокого уровня научных кадров страны, сохранившегося с дореволюционных времен материального потенциала России, централизации политической и экономической власти, свойству российского народа верить "верхам" и воплощать провозглашаемые идеи.

План доказал эффективность советской системы централизованной власти и государственного управления.

Результаты плана

В 1935 году принятая программа была выполнена и перевыполнена. Построено 40 электростанций вместо запланированных 30, введено мощностей почти втрое больше, чем предусматривалось по плану. Возведено 13 электроцентралей мощностью по 100 тыс. кВт каждая. Общая мощность российских ГЭС составила около 700 000 кВт.

В эти годы были возведены крупнейшие объекты стратегического значения, такие как всемирно известная Днепровская ГЭС. По суммарным показателям Единая советская энергосистема превзошла аналогичные системы самых развитых стран Нового и Старого Света. Производство электроэнергии по странам Европы в те годы значительно отставало от показателей СССР.

Развитие села

Если до революции в деревнях России электричества практически не существовало (небольшие электростанции, устанавливаемые крупными землевладельцами не в счет), то с реализацией плана ГОЭЛРО благодаря использованию электроэнергии сельское хозяйство получило новый толчок к развитию. На мельницах, лесопилках, зерноочистительных машинах появились электродвигатели, что способствовало модернизации отрасли.

Помимо того, электричество прочно вошло в быт горожан и селян, в буквальном смысле вырвав "темную Россию" из мрака.


Типы электростанций Тепловые (ТЭС) - 50 % Тепловые (ТЭС) - 50 % Гидроэлектростанции (ГЭС) % Гидроэлектростанции (ГЭС) % Атомные (АЭС) - 15 % Атомные (АЭС) - 15 % Альтернативные источники Альтернативные источники энергии- 2 – 5 % (солнечная энергия, энергия термоядерного синтеза, приливная энергетика, ветроэнергетика) энергии- 2 – 5 % (солнечная энергия, энергия термоядерного синтеза, приливная энергетика, ветроэнергетика)






Генератор электрического тока Генератор преобразует механическую энергию в электрическую Генератор преобразует механическую энергию в электрическую Действие генератора основано на явлении электромагнитной индукции Действие генератора основано на явлении электромагнитной индукции


Рамка с током – основной элемент генератора Вращающаяся часть называется РОТОРОМ (магнит). Вращающаяся часть называется РОТОРОМ (магнит). Неподвижная часть называется СТАТОРОМ (рамка) Неподвижная часть называется СТАТОРОМ (рамка) При вращении рамки, пронизывающий рамку, магнитный поток изменяется во времени, вследствие чего в рамке возникает индукционный ток


Передача электроэнергии Для передачи электроэнергии потребителям используют линии электропередач (ЛЭП). При передаче электроэнергии на расстояние происходят её потери за счёт нагревания проводов (закон Джоуля - Ленца). Способы уменьшения тепловых потерь: 1) Уменьшение сопротивления проводов, но увеличение их диаметра (тяжелы – трудно подвешивать, и дорогостоящи – медь). 2) Уменьшение силы тока путём повышения напряжения.














Влияние тепловых электростанций на окружающую среду ТЭС – приводят к тепловому загрязнению воздуха продуктами сгорания топлива. ГЭС – приводят к затопления огромных территорий, которые выводятся из землепользования. АЭС - может привести к выбросу радиоактивных веществ.


Основные этапы производства, передачи и потребления электроэнергии 1.Механическую энергию преобразуют в электрическую с помощью генераторов на электростанциях. 1.Механическую энергию преобразуют в электрическую с помощью генераторов на электростанциях. 2. Электрическое напряжение повышают для передачи электроэнергии на большие расстояния. 2. Электрическое напряжение повышают для передачи электроэнергии на большие расстояния. 3. Электроэнергию передают под высоким напряжением по высоковольтным линиям электропередач. 3. Электроэнергию передают под высоким напряжением по высоковольтным линиям электропередач. 4. При распределении электроэнергии потребителям электрическое напряжение понижают. 4. При распределении электроэнергии потребителям электрическое напряжение понижают. 5. При потреблении электроэнергии её преобразуют в другие виды энергии – механическую, световую или внутреннюю. 5. При потреблении электроэнергии её преобразуют в другие виды энергии – механическую, световую или внутреннюю.

БОУ Чувашской Республики СПО «АСХТ» Минобразования Чувашии

МЕТОДИЧЕСКАЯ

РАЗРАБОТКА

открытого занятия по дисциплине «Физика»

Тема: Производство, передача и потребление электрической энергии

высшей квалификационной категории

Алатырь, 2012год

РАССМОТРЕНО

на заседании методической комиссии

гуманитарных и естественнонаучных

дисциплин

Протокол № __ от «___» ______ 2012г.

Председатель_____________________

Рецензент: Ермакова Н.Е., преподаватель БОУ ЧР СПО «АСХТ», председатель ПЦК гуманитарных и естественнонаучных дисциплин

На сегодняшний день энергия остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать. Трудно представить существование современной цивилизации без электроэнергии. Если в нашей квартире отключается свет хотя бы на несколько минут, то мы уже испытываем многочисленные неудобства. А что произойдет при отключении электроэнергии на несколько часов! Электрический ток – основной источник электроэнергии. Вот почему так важно представлять физические основы получения, передачи и использования переменного электрического тока.

  1. Пояснительная записка

  2. Содержание основной части

  3. Библиографический список

  4. Приложения.

Пояснительная записка

Цели:
- познакомить студентов с физическими основами производства, передачи и

использования электрической энергии

Способствовать формированию у студентов информационной и коммуникативной

компетентностей

Углубить познания о развитии электроэнергетики и связанных с этим экологических

проблем, воспитание чувства ответственности за сохранение окружающей среды

Обоснование выбранной темы:

Представить сегодня нашу жизнь без электрической энергии невозможно. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Немыслим без электроэнергии и наш быт. Электроэнергия была и остается главной составляющей жизни человека. Какой будет энергетика ХХІ века? Чтобы дать ответы на этот вопрос необходимо знать основные способы получения электроэнергии, изучить проблемы и перспективы современного производства электроэнергии не только в России, но и на территории Чувашии и Алатыря Данное занятие позволяет сформировать у студентов умение перерабатывать информацию и применять знания теории на практике, развивать навыки самостоятельной работы с различными источниками информации. На этом занятии раскрываются возможности формирования информационной и коммуникативной компетентностей

План занятия

по дисциплине «Физика»
Дата: 16.04.2012 г.
Группа: 11 тв
Цели:

- образовательная: - познакомить студентов с физическими основами производства,

передачи и использования электрической энергии

Способствовать формированию у студентов информационной и

коммуникативной компетентностей

Углубить познания о развитии электроэнергетики и связанных с

этим экологических проблем, воспитание чувства ответственности

за сохранение окружающей среды

- развивающая:: - формировать умений перерабатывать информацию и применять

знания теории на практике;

Развивать навыки самостоятельной работы с различными

источниками информации

Развивать познавательный интерес к предмету.
- воспитательная: - воспитывать познавательную активность студентов;

Воспитывать умение слушать и быть услышанным;

Воспитывать самостоятельность студентов в приобретении новых

знаний


- воспитывать коммуникативные качества при работе в группах
Задача: формирование ключевых компетенций при изучении производства, передачи и использования электрической энергии
Вид занятия - урок
Тип занятия - комбинированный урок
Средства обучения: учебники, справочники, раздаточный материал, мультимедийный проектор,

экран, электронная презентация


Ход занятия:

  1. Организационный момент (проверка отсутствующих, готовности группы к уроку)

  2. Организация целевого пространства

  3. Проверка знаний студентов, сообщение темы и плана опроса, постановка цели
Тема: «Трансформаторы»

Действия педагога

Действия студентов


Методы проведения



  1. Проводит фронтальную беседу, корректирует ответы студентов:
1) В чём преимущества электрической энергии перед другими видами энергии?

2) С помощью какого устройства изменяют силу переменного тока и напряжение?

3) Каково его назначение?

4) Каково устройство трансформатора?

6) Что такое коэффициент трансформации? Каким он бывает численно?

7) Какой трансформатор называют повышающим, какой понижающим?

8) Что называют мощностью трансформатора?


  1. Предлагает решить задачу

  1. Проводит тестирование

  2. Предлагает студентам ключи к тесту для проведения самопроверки

  1. Отвечают на вопросы

    1. Находят правильные ответы

    2. Корректируют ответы товарищей

    3. Вырабатывают критерии своего поведения

    4. Сравнивают и находят общее и отличное в явлениях

  1. Анализируют решение, ищут ошибки, обосновывают ответ

  1. Отвечают на вопросы теста

  2. Проводят взаимопроверку тестов

Фронтальная беседа

Решение задач

Тестирование


  1. Подведение итогов проверки основных положений изученного раздела

  2. Сообщение темы, постановка цели, плана изучения нового материала

Тема: «Производство, передача и потребление электроэнергии»
План: 1) Производство электроэнергии:

а) Промышленная энергетика (ГЭС, ТЭС, АЭС)

б) Альтернативная энергетика (ГеоТЭС, СЭС, ВЭС, ПЭС)

2) Передача электрической энергии

3) Эффективное использование электрической энергии

4) Энергетика Чувашской Республики


  1. Мотивация учебной деятельности студентов

Действия педагога

Действия студентов


Метод изучения



  1. Организует целевое пространство, знакомит с планом изучения темы

  2. Знакомит с основными способами производства электроэнергии

  3. Предлагает студентам выделить физические основы производства электроэнергии

  4. Предлагает заполнить обобщающую таблицу

  5. Формирует умения перерабатывать информацию, выделять главное, анализировать, сравнивать, находить общее и отличное, делать выводы;

  1. Осознают цели, записывают план

  1. Слушают, осознают, анализируют

  1. Делают доклад, слушают докладчика, осмысливают услышанное, делают выводы

  1. Исследуют средства, обобщают, делают выводы, заполняют таблицу

  2. Сравнивают, находят общее и отличное

Опережающая самостоятельная работа


Исследование
Доклады студентов

  1. Закрепление нового материала

  1. Обобщение и систематизация материала.

  2. Проведение итогов занятия.

  3. Задание для самостоятельной работы студентов во внеаудиторное время.

  • Учебник § 39-41, закончить заполнение таблицы
Тема: Производство, передача и потребление электроэнергии
Представить сегодня нашу жизнь без электрической энергии невозможно. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Немыслим без электроэнергии и наш быт. Столь широкое применение электроэнергии объясняется ее преимуществами перед другими видами энергии. Электроэнергия была и остается главной составляющей жизни человека Главные вопросы – сколько энергии нужно человечеству? Какой будет энергетика ХХІ века? Чтобы дать ответы на эти вопросы необходимо знать основные способы получения электроэнергии, изучить проблемы и перспективы современного производства электроэнергии не только в России, но и на территории Чувашии и Алатыря.

Преобразования энергии различных видов в электрическую энергию происходит на электростанциях. Рассмотрим физические основы производства электроэнергии на электростанциях.

Статистические данные о производстве электроэнергии в России, млрд кВтч

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы:


  • Электростанции промышленной энергетики: ГЭС, ТЭС, АЭС

  • Электростанции альтернативной энергетики: ПЭС, СЭС, ВЭС, ГеоТЭС

Гидроэлектростанции
Гидроэлектростанция представляет собой комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию На ГЭС электроэнергию получают, используя энергию воды, перетекающей с высшего уровня к низшему уровню и вращающей при этом турбину. Плотина – самый важный и самый дорогостоящий элемент ГЭС. Вода перетекает с верхнего бьефа в нижний бьеф по специальным трубопроводам, либо по выполненным в теле плотины каналам и приобретает большую скорость. Струя воды поступает на лопасти гидротурбины. Ротор гидротурбины приводится во вращение под действием центробежной силы струи воды. Вал турбины соединяется с валом электрического генератора, и при вращении ротора генератора механическая энергия ротора преобразуется в электрическую энергию.
Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами – их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Однако гидроэнергетика не безвредна для окружающей среды. При постройке плотины образуется водохранилище. Вода, залившая огромные площади, необратимо изменяет окружающую среду. Подъем уровня реки плотиной может вызвать заболоченность, засоленность, изменения прибрежной растительности и микроклимата. Поэтому так важно создание и использование экологически безвредных гидротехнических сооружений.
Теплоэлектростанции
Тепловая электростанция (ТЭС) – электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основными видами топлива для ТЭС являются природные ресурсы – газ, уголь, торф, горючие сланцы, мазут. Тепловые электростанции разделяются на две группы: конденсационные и теплофикационные или теплоцентрали (ТЭЦ). Конденсационные станции снабжают потребителей только электрической энергией. Их сооружают вблизи залежей местного топлива с тем, чтобы не возить его на большие расстояния. Теплоцентрали снабжают потребителей не только электрической энергией, но и теплом – водяным паром или горячей водой, поэтому ТЭЦ сооружают поблизости от приемников теплоты, в центрах промышленных районов и крупных городов для уменьшения протяженности теплофикационных сетей. Топливо транспортируют на ТЭЦ из мест его добычи. В машинном зале ТЭС установлен котел с водой. За счет тепла, образующегося в результате сжигания топлива, вода в паровом котле нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 550°С и под давлением 25 МПа поступает по паропроводу в паровую турбину, назначение которой превращать тепловую энергию пара в механическую энергию. Энергия движения паровой турбины преобразуется в электрическую энергию генератором, вал которого непосредственно соединен с валом турбины. После паровой турбины водяной пар, имея уже низкое давление и температуру около 25°С, поступает в конденсатор. Здесь пар с помощью охлаждающей воды превращается в воду, которая с помощью насоса снова подается в котел. Цикл начинается снова. ТЭС работают на органическом топливе, но это, к сожалению, невосполнимые природные ресурсы. К тому же, работа ТЭС сопровождается экологическими проблемами: при сгорании топлива происходит тепловое и химическое загрязнение среды, что оказывает губительное воздействие на живой мир водоемов и качество питьевой воды.
Атомные электростанции
Атомная электростанция (АЭС) – электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую энергию. Атомные электростанции действуют по такому же принципу, что и тепловые электростанции, но используют для парообразования энергию, получающуюся при делении тяжелых атомных ядер (урана, плутония). В активной зоне реактора протекают ядерные реакции, сопровождающиеся выделением огромной энергии. Вода, соприкасающаяся в активной зоне реактора с тепловыделяющими элементами, забирает у них тепло и передает это тепло в теплообменнике также воде, но уже не представляющей опасности радиоактивного излучения. Поскольку вода в теплообменнике превращается в пар, его называют парогенератором. Горячий пар поступает в турбину, преобразующую тепловую энергию пара в механическую энергию. Энергия движения паровой турбины преобразуется в электрическую энергию генератором, вал которого непосредственно соединен с валом турбины. АЭС, являющиеся наиболее современным видом электростанций, имеют ряд существенных преимуществ перед другими видами электростанций: не требуют привязки к источнику сырья и собственно могут быть размещены в любом месте, при нормальном режиме функционирования считаются экологически безопасными. Но при авариях на АЭС возникает потенциальная опасность радиационного загрязнения среды. Кроме того существенной проблемой остается утилизация радиоактивных отходов и демонтаж отслуживших свой срок АЭС.
Альтернативная энергетика - совокупность перспективных способов получения энергии, которые распространены, не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии района. Альтернативный источник энергии - способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии - потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений.
Приливные электростанции
Использование энергии приливов началось еще в ХІ веке, когда на берегах Белого и Северного морей появились мельницы и лесопилки. Два раза в сутки уровень океана то поднимается под действием гравитационных сил Луны и Солнца, притягивающих к себе массы воды. Вдали от берега колебания уровня воды не превышают 1 м, но у самого берега они могут достигать 13-18 метров. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор. Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 метров. В приливных электростанциях двустороннего действия турбины работают при движении воды из моря в бассейн и обратно. Приливные электростанции двустороннего действия способны вырабатывать электроэнергию непрерывно в течение 4-5 часов с перерывами в 1-2 часа четыре раза в сутки. Для увеличения времени работы турбин существуют более сложные схемы – с двумя, тремя и большим количеством бассейнов, однако стоимость таких проектов весьма высока. Недостаток приливных электростанций в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым – условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.
Ветряные электростанции
Энергия ветра – это косвенная форма солнечной энергии, являющаяся следствием разности температур и давлений в атмосфере Земли. Около 2% поступающей на Землю солнечной энергии превращается в энергию ветра. Ветер – возобновляемый источник энергии. Его энергию можно использовать почти во всех районах Земли. Получение электроэнергии от ветросиловых установок является чрезвычайно привлекательной, но вместе с тем технически сложной задачей. Трудность заключается в очень большой рассеянности энергии ветра и в его непостоянстве. Принцип действия ветряных электростанций прост: ветер крутит лопасти установки, приводя в движение вал электрогенератора. Генератор вырабатывает электрическую энергию, и, таким образом, энергия ветра превращается в электрический ток. Производство ВЭС очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные установки даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ВЭС вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ВЭС, необходимы огромные площади много больше, чем для других типов электрогенераторов. И все же изолированные ВЭС с тепловыми двигателями как резерв и ВЭС, которые работают параллельно с тепло – и гидростанциями, должны занять видное место в энергоснабжении тех районов, где скорость ветра превышает 5 м/с.
Геотермальные электростанции
Геотермальная энергия – это энергия внутренних областей Земли. Извержение вулканов наглядно свидетельствует об огромном жаре внутри планеты. Ученые оценивают температуру ядра Земли в тысячи градусов Цельсия. Геотермальное тепло – это тепло, содержащееся в подземной горячей воде и водяном паре, и тепло нагретых сухих пород. Геотермальные тепловые электростанции (ГеоТЭС) преобразуют внутреннее тепло Земли (энергию горячих пароводяных источников) в электрическую энергию. Источниками геотермальной энергии могут быть подземные бассейны естественных теплоносителей – горячей воды или пара. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Полученный таким способом природный пар после предварительной очистки от газов, вызывающих разрушение труб, направляется в турбины, соединенные с электрогенераторами. Использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии. К недостаткам ГеоТЭС относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы создают в окрестностях немалый шум и могут, к тому же, содержать отравляющие вещества. Кроме того, ГеоТЭС построить можно не везде, потому что для ее постройки необходимы геологические условия.
Солнечные электростанции
Солнечная энергия – наиболее грандиозный, дешевый, но, и, пожалуй, наименее используемый человеком источник энергии. Преобразование энергии солнечного излучения в электрическую энергию осуществляется с помощью солнечных электростанций. Различают термодинамические СЭС, в которых солнечная энергия сначала преобразуется в тепловую, а затем в электрическую; и фотоэлектрические станции, непосредственно преобразующие солнечную энергию в электрическую энергию. Фотоэлектрические станции бесперебойно снабжают электроэнергией речные бакены, сигнальные огни, системы аварийной связи, лампы маяков и многие другие объекты, расположенные в труднодоступных местах. По мере совершенствования солнечных батарей они будут находить применение в жилых домах для автономного энергоснабжения (отопления, горячего водоснабжения, освещения и питания бытовых электроприборов). Солнечные электростанции обладают заметным преимуществом перед станциями других типов: отсутствием вредных выбросов и экологической чистотой, бесшумностью в работе, сохранением в неприкосновенности земных недр.
Передача электроэнергии на расстояние
Электроэнергия производится вблизи источников топлива или гидроресурсов, в то время как ее потребители находятся повсеместно. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния. Рассмотрим принципиальную схему передачи электроэнергии от генератора к потребителю. Обычно генераторы переменного тока на электростанциях вырабатывают напряжение, не превышающее 20 кВ, так как при более высоких напряжениях резко возрастает возможность электрического пробоя изоляции в обмотке и в других частях генератора. Для сохранения передаваемой мощности напряжение в ЛЭП должно быть максимальным, поэтому на крупных электростанциях ставят повышающие трансформаторы. Однако напряжение в линии электропередачи ограничено: при слишком высоком напряжении между проводами возникают разряды, приводящие к потерям энергии. Для использования электроэнергии на промышленных предприятиях требуется значительное снижение напряжения, осуществляемое с помощью понижающих трансформаторов. Дальнейшее снижение напряжения до величины порядка 4 кВ необходимо для электрораспределения по местным сетям, т.е. по тем проводам, которые мы видим на окраинах наших городов. Менее мощные трансформаторы снижают напряжение до 220 В (напряжение, используемое большинством индивидуальных потребителей).

Эффективное использование электроэнергии
Электроэнергия занимает существенное место в статье расходов каждой семьи. Ее эффективное использование позволит значительно снизить издержки. Все чаще в наших квартирах «прописываются» компьютеры, посудомоечные машины, кухонные комбайны. Поэтому и плата за электроэнергию весьма значительна. Возросшее энергопотребление приводит к дополнительному потреблению невозобновляемых природных ресурсов: уголь, нефть, газ. При сжигании топлива в атмосферу выбрасывается углекислый газ, что приводит к пагубным климатическим изменениям. Экономия электричества позволяет сократить потребление природных ресурсов, а значит, и снизить выбросы вредных веществ в атмосферу.

Четыре ступени энергосбережения


  • Не забывайте выключать свет.

  • Использовать энергосберегающие лампочки и бытовую технику класса А.

  • Хорошо утеплять окна и двери.

  • Установить регуляторы подачи тепла (батареи с вентилем).

Энергетика Чувашии - одна из самых развитых отраслей промышленности республики, от работы которой напрямую зависит социальное, экономическое и политическое благополучие. Энергетика - это основа функционирования экономики и жизнеобеспечения республики. Работа энергетического комплекса Чувашии настолько прочно связана с повседневной жизнью каждого предприятия, учреждения, фирмы, дома, каждой квартиры и в итоге – каждого жителя нашей республики.


В самом начале XX века, когда электроэнергетика делала еще только первые практические шаги.

До 1917г. на территории современной Чувашии не было ни одной электрической станции общественного пользования. Крестьянские дома освещались лучиной.

В промышленности имелось всего 16 первичных двигателей. В Алатырском уезде электроэнергию производили и использовали на лесопильном заводе, на мукомольных предприятиях. Небольшая электростанция имелась на винокуренном заводе вблизи Марпосада. Собственную электростанцию на маслобойном заводе в г.Ядрине имели купцы Таланцевы. В Чебоксарах небольшую электростанцию имел купец Ефремов. Она обслуживала лесопильное производство и два его дома.

Как в домах, так и на улицах городов Чувашии света почти не было.

Развитие энергетики Чувашии начинается после 1917г. С 1918г. начинается строительство электростанций общественного пользования, разворачивается большая работа по созданию электроэнергетики в г.Алатырь. Первую электростанцию решили построить в то время на бывшем заводе Попова.

В Чебоксарах вопросами электрификации занимался отдел коммунального хозяйства. Его усилиями в 1918г. возобновила работу электростанция на лесопильном заводе, принадлежавшем купцу Ефремову. Электроэнергия по двум линиям поступала в государственные учреждения и на уличное освещение.

Образование Чувашской автономной области (24 июня 1920г.) создало благоприятные условия для развития энергетики. Именно в 1920г. в связи с острой нуждой областной отдел коммунального хозяйства оборудовал первую небольшую электростанцию г.Чебоксары, мощность в 12 кВт.

Мариинско-Посадская электростанция была оборудована в 1919г. Начала давать электроэнергию Марпосадская городская электростанция. Цивильская электростанция была построена в 1919г., но из-за отсутствия линий электропередач отпуск электроэнергии стал производиться только с 1923 года.

Таким образом, первые основы энергетики Чувашии закладывались в годы интервенции и гражданской войны. Создавались первые небольшие городские коммунальные электростанции общественного пользования общей мощностью около 20 кВт.

До революции 1917 года на территории Чувашии не было ни одной электрической станции общественного пользования, в домах царила лучина. При лучине или керосиновой лампе работали даже в небольших мастерских. Здесь же кустари использовали оборудование с механическим приводом. На более солидных предприятиях, где обрабатывали сельскохозяйственные и лесные продукты, варили бумагу, сбивали масло и мололи муку,

имелось 16 маломощных двигателей.

При большевиках пионером энергетики Чувашии стал г. Алатырь. В этом небольшом городке благодаря усилиям местного совнархоза появилась первая общественная электростанция.


В Чебоксарах вся электрификация в 1918 году свелась к тому, что восстановили электростанцию на конфискованном у купца Ефремова лесопильном заводе, который стал называться «Имени 25 октября». Однако ее электроэнергии хватило лишь на освещение некоторых улиц и госучреждений (по статистике в 1920 году городским чиновникам светило около 100 лампочек мощностью 20 свечей).

В 1924 году были построены еще три небольших электростанции, и, для управления увеличивающейся энергетической базой, 1 октября 1924 года было создано Чувашское объединение коммунальных электростанций – ЧОКЭС. В 1925 году Госплан республики принял план электрификации, по которому предусматривалось за 5 лет построить 8 новых электростанций – 5 городских (в Чебоксарах, Канаше, Марпосаде, Цивильске и Ядрине) и 3 сельских (в Ибресях, Вурнарах и Урмарах). Реализация этого проекта позволила электрифицировать 100 сел – в основном Чебоксарского и Цивильского районов и вдоль тракта Чебоксары – Канаш, 700 крестьянских дворов, некоторые кустарные мастерские.
За 1929-1932 годы мощности коммунальных и промышленных электростанций республики выросли почти в 10 раз; выработка электроэнергии этими электростанциями увеличилась почти в 30 раз.

В годы Великой Отечественной войны были проведены большие мероприятия по укреплению и развитию энергетической базы промышленности республики. Рост мощностей происходил главным образом за счёт роста мощностей районных, коммунальных и сельских электростанций. Энергетики Чувашии с честью выдержали тяжёлое испытание и выполнили свой патриотический долг. Они понимали, что производимая электроэнергия необходима, в первую очередь, предприятиям, выполняющим заказы с фронта.


За годы послевоенной пятилетки в Чувашской АССР построено и сдано в эксплуатацию 102 сельских электростанции, вт.ч. 69 ГЭС и 33 ТЭС. Отпуск электроэнергии сельскому хозяйству увеличился в 3 раза по сравнению с 1945 годом.
В 1953 году в Алатыре по приказу, подписанному Сталиным, было начато строительство Алатырской ТЭС. Первый турбогенератор мощностью 4 МВТ был введен в эксплуатацию в 1957 году, 2-й - в 1959 году. По прогнозам, мощности ТЭС должно было хватить до1985 г. как для города, так и района и обеспечить электроэнергией Тургеньевский Светозавод в Мордовии.

Библиографический список


  1. Учебник С.В.Громова «Физика, 10 класс». Москва: Просвещение.

  2. Энциклопедический словарь юного физика. Состав. В.А. Чуянов, Москва: Педагогика.

  3. Эллион Л., Уилконс У.. Физика. Москва: Наука.

  4. Колтун М. Мир физики. Москва.

  5. Источники энергии. Факты, проблемы, решения. Москва: Наука и техника.

  6. Нетрадиционные источники энергии. Москва: Знание.

  7. Юдасин Л.С.. Энергетика: проблемы и надежды. Москва: Просвещение.

  8. Подгорный А.Н. Водородная энергетика. Москва: Наука.

Приложение

Электростанция

Первичный источник энергии


Схема преобразования

энергии

Преимущества


Недостатки






ГеоТЭС



.
Лист самоконтроля

Закончите предложение:

Энергосистема - это


  1. Электрическая система электростанции

  2. Электрическая система отдельного города

  3. Электрическая система районов страны, соединенная высоковольтными линиями электропередачи

Энергосистема - Электрическая система районов страны, соединенная высоковольтными линиями электропередачи

Что является источником энергии на ГЭС?


  1. Нефть, уголь, газ

  2. Энергия ветра

  3. Энергия воды

Какие источники энергии – возобновляемые или невозобновляемые – используются в Республике Чувашия?

Невозобновляемые



Расположите в хронологическом порядке источники энергии, которые становились доступны человечеству, начиная с самых ранних:

А. Электрическая тяга;

Б. Атомная энергия;

В. Мускульная энергия домашних животных;

Г. Энергия пара.



Назовите известные вам источники энергии, использование которых приведет к уменьшению экологических последствий электроэнергетики.


ПЭС
ГеоТЭС

Проверьте себя по ответам на экране и выставьте оценку:

5 верных ответов – 5

4 верных ответа – 4

3 верных ответа - 3


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

по физике

на тему: "Производство, передача и потребление электроэнергии"

Выполнила:

Ученица 11А

Ходакова Юлия

Преподаватель:

Дубинина Марина Николаевна

1. Производство электроэнергии

Электроэнергия производится на электрических станциях зачастую при помощи электромеханических индукционных генераторов. Существует 2 основных вида электростанций -- тепловые электростанции (ТЭС) и гидроэлектрические электростанции (ГЭС) -- различающиеся характером двигателей, которые вращают роторы генераторов.

Источником энергии на ТЭС является топливо: мазут, горючие сланцы, нефть, угольная пыль. Роторы электрогенераторов приводятся во вращение при помощи паровых и газовых турбин либо двигателями внутреннего сгорания (ДВС).

Как известно, КПД тепловых двигателей увеличивается с ростом начальной температуры рабочего тела. Поэтому пар, который поступает в турбину, доводят до порядка 550 °С при давлении около 25 МПа. КПД ТЭС достигает 40 %.

На тепловых электростанциях (ТЭЦ) большая часть энергии отработанного пара применяется на промышленных предприятиях и для бытовых нужд. КПД ТЭЦ может достигать 60-70 %.

На ГЭС для вращения роторов генераторов применяют потенциальную энергию воды. Роторы приводятся во вращение гидравлическими турбинами.

Мощность станции зависит от разности уровней воды, которые создаются плотиной (напора), и от массы воды, которая проходит через турбину за 1 секунду (расхода воды).

Часть электроэнергии, которая потребляется в России (примерно 10 %), производится на атомных электростанциях (АЭС).

2. Передача электроэнергии

В основном, этот процесс сопровождается существенными потерями, которые связаны с нагревом проводов линий электропередачи током. Согласно закону Джоуля-Ленца энергия, которая расходуется на нагрев проводов, является пропорциональной квадрату силы тока и сопротивлению линии, так что при большой длине линии передача электроэнергии может стать экономически невыгодной. Поэтому нужно уменьшать силу тока, что при заданной передаваемой мощности приводит к необходимости увеличения напряжения. Чем длиннее линия электропередачи, тем выгоднее применять большие напряжения (на некоторых напряжение достигает 500 кВ). Генераторы переменного тока выдают напряжения, которые не могут быть больше 20 кВ (что связано со свойствами используемых изоляционных материалов).

Поэтому на электростанциях ставят повышающие трансформаторы, которые увеличивают напряжение и во столько же раз уменьшают силу тока. Для подачи потребителям электроэнергии необходимого (низкого) напряжения на концах линии электропередачи ставят трансформаторы понижающие. Понижение напряжения обычно производится поэтапно.

3. Использование электроэнергии

Электрическая энергия используется почти повсеместно. Конечно, большая часть производимой электроэнергии приходится на промышленность. Помимо этого, крупным потребителем будет являться транспорт.

Многие железнодорожные линии уже давно перешли на электрическую тягу. Освещение жилищ, улиц городов, производственные и бытовые нужды сел и деревень - все это тоже является крупным потребителем электроэнергии.

Огромная часть получаемой электроэнергии превращается в механическую энергию. Все механизмы, используемые в промышленности, приводятся в движение за счет электродвигателей. Потребителей электроэнергии достаточно, и находятся они повсюду.

А производится электроэнергия лишь в немногих местах. Возникает вопрос о передаче электроэнергии, причем на большие расстояния. При передаче на большие расстояния, происходит много потерь электроэнергии. Главным образом, это потери на нагрев электропроводов.

По закону Джоуля-Ленца энергия, расходуемая на нагрев, вычисляется по формуле:

электрический энергия атомный тепловой

Так как снизить сопротивление до приемлемого уровня практически невозможно, то приходится уменьшать силу тока. Для этого повышают напряжение. Обычно на станциях стоят повышающие генераторы, а в конце линий передач стоят понижающие трансформаторы. И уже с них энергия расходится по потребителям.

Потребность в электрической энергии постоянно увеличивается. Для того чтобы соответствовать запросам на увеличение потребления есть два пути:

1. Строительство новых электростанций

2. Использование передовых технологий.

Эффективное использование электроэнергии

Первый способ требует затрат большого числа строительных и денежных ресурсов. На строительство одной электростанции тратится несколько лет. К тому же, например, тепловые электростанции потребляют много невозобновляемых природных ресурсов, и наносят вред окружающей природной среде.

Использовать передовые технологии очень верное решение данной проблемы. К тому же необходимо избегать напрасных трат электроэнергии и свести неэффективное использование к минимуму.

Размещено на Allbest.ru

...

Подобные документы

    Особенности тепловых и атомных электростанций, гидроэлектростанций. Передача и перераспределение электрической энергии, использование ее в промышленности, быту, транспорте. Осуществление повышение и понижение напряжения с помощью трансформаторов.

    презентация , добавлен 12.01.2015

    История рождения энергетики. Виды электростанций и их характеристика: тепловая и гидроэлектрическая. Альтернативные источники энергии. Передача электроэнергии и трансформаторы. Особенности использования электроэнергетики в производстве, науке и быту.

    презентация , добавлен 18.01.2011

    Промышленная и альтернативная энергетика. Преимущества и недостатки гидроэлектростанций, тепловых и атомных электростанций. Получение энергии без использования традиционного ископаемого топлива. Эффективное использование энергии, энергосбережение.

    презентация , добавлен 15.05.2016

    Производство электрической энергии. Основные виды электростанций. Влияние тепловых и атомных электростанций на окружающую среду. Устройство современных гидроэлектростанций. Достоинство приливных станций. Процентное соотношение видов электростанций.

    презентация , добавлен 23.03.2015

    Описание процессов получения электроэнергии на тепловых конденсационных электрических станциях, газотурбинных установках и теплоэлектроцентралях. Изучение устройства гидравлических и аккумулирующих электростанций. Геотермальная и ветровая энергетика.

    реферат , добавлен 25.10.2013

    Роль электроэнергии в производственных процессах на современном этапе, метод ее производства. Общая схема электроэнергетики. Особенности главных типов электростанций: атомной, тепловой, гидро- и ветрогенераторы. Преимущества электрической энергии.

    презентация , добавлен 22.12.2011

    Генерация электроэнергии как ее производство посредством преобразования из других видов энергии, с помощью специальных технических устройств. Отличительные признаки, приемы и эффективность промышленной и альтернативной энергетики. Типы электростанций.

    презентация , добавлен 11.11.2013

    Производство электрической и тепловой энергии. Гидравлические электрические станции. Использование альтернативных источников энергии. Распределение электрических нагрузок между электростанциями. Передача и потребление электрической и тепловой энергии.

    учебное пособие , добавлен 19.04.2012

    Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат , добавлен 16.09.2010

    Мировые лидеры в производстве ядерной электроэнергии. Классификация атомных электростанций. Принцип их действия. Виды и химический состав ядерного топлива и суть получения энергии из него. Механизм протекания цепной реакции. Нахождение урана в природе.

Переменное напряжение можно преобразовывать - повышать или понижать.

Устройства, с помощью которых можно преобразовывать напряжение называются трансформаторами. Работа трансформаторов основана наявлении электромагнитной индукции.

Устройство трансформатора

Трансформатор состоит из ферромагнитного сердечника, на который надеты две катушки .

Первичной обмоткой называется катушка, подключенная к источнику переменного напряжения U 1 .

Вторичной обмоткой называется катушка, которую можно подключать к приборам, потребляющим электрическую энергию .

Приборы, потребляющие электрическую энергию, выполняют роль нагрузки, и на них создается переменное напряжение U 2 .

Если U 1 > U 2 , то трансформатор называется понижающим, а еслиU 2 > U 1 - то повышающим.

Принцип работы

В первичной обмотке создается переменный ток, следовательно, в ней создается переменный магнитный поток. Этот поток замыкается в ферромагнитном сердечнике и пронизывает каждый виток обеих обмоток. В каждом из витков обеих обмоток появляется одинаковая ЭДС индукции e i 0

Если n 1 и n 2 - число витков в первичной и вторичной обмотках соответственно, то

ЭДС индукции в первичной обмотке e i 1 = n 1 * e i 0 ЭДС индукции во вторичной обмотке e i 2 = n 1 * e i 0

где e i 0 - ЭДС индукции, возникающая в одном витке вторичной и первичной катушки .

    1. Передача электроэнергии

П
ередача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.Потери энергии (мощности) на нагревание проводов можно рассчитать по формуле

Для уменьшения потерь на нагревания проводов необходимо увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется переменный ток частотой 50 Гц. На рисунке представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии

41. Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн. Свойства электромагнитных волн. Идеи теории Максвелла

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку законаэлектромагнитной индукции, открытого Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле .

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Однажды начавшийся процесс взаимного порождения магнитного и электрического полей должен далее непрерывно продолжаться и захватывать все новые области пространства.

Вывод:

Существует особая форма материи – электромагнитное поле – которое состоит из порождающих друг друга вихревых электрического и магнитного полей.

Электромагнитное поле характеризуется двумя векторными величинами – напряженностью Е вихревого электрического поля и индукцией В магнитного поля .

Процесс распространения изменяющихся вихревых электрического и магнитного полей в пространстве называется электромагнитной волной.

Гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла)



Вверх