2 примера реакции соединения. Химические реакции. Классификация химических реакций

При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава:

Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений.

Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 ,

так и относиться к числу окислительно-восстановительных:

2FеСl 2 + Сl 2 = 2FеСl 3 .

2. Реакции разложения

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества:

А = В + С + D.

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества.

Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:

CuSO 4 + 5H 2 O

2H 2 O + 4NO 2 O + O 2 O.

2AgNO 3 = 2Ag + 2NO 2 + O 2 , (NH 4)2Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.

Реакции разложения в органической химии носят название крекинга:

С 18 H 38 = С 9 H 18 + С 9 H 20 ,

или дегидрирования

C 4 H 10 = C 4 H 6 + 2H 2 .

3. Реакции замещения

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:

А + ВС = АВ + С.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 ,

Zn + 2НСl = ZnСl 2 + Н 2 ,

2КВr + Сl 2 = 2КСl + Вr 2 ,

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 .

Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны. Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды:

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 ,

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 ,

Иногда эти реакции рассматривают как реакции обмена:

СН 4 + Сl 2 = СН 3 Сl + НСl.

4. Реакции обмена

Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:

АВ + СD = АD + СВ.

Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами - оксидами, основаниями, кислотами и солями:

ZnO + Н 2 SО 4 = ZnSО 4 + Н 2 О,

AgNО 3 + КВr = АgВr + КNО 3 ,

СrСl 3 + ЗNаОН = Сr(ОН) 3 + ЗNаСl.

Частный случай этих реакций обмена - реакции нейтрализации:

НСl + КОН = КСl + Н 2 О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 ,

Са(НСО 3) 2 + Са(ОН) 2 = 2СаСО 3 ↓ + 2Н 2 О,

СН 3 СООNа + Н 3 РО 4 = СН 3 СООН + NаН 2 РО 4 .

Реакции разложения играют большую роль в жизни планеты. Ведь именно они способствуют уничтожению отходов жизнедеятельности всех биологических организмов. Кроме того, этот процесс ежедневно помогает человеческому телу усваивать различные сложные соединения путем расщепления их на простые (катаболизм). Помимо всего перечисленного, данная реакция способствует образованию простых органических и неорганических веществ из сложных. Давайте узнаем больше об этом процессе, а также рассмотрим практические примеры химической реакции разложения.

Что называется реакциями в химии, какие виды их бывают и от чего они зависят

Прежде чем изучить информацию о разложении, стоит узнать о в целом. Под этим названием подразумевается способность молекул одних веществ взаимодействовать с другими и образовывать таким способом новые соединения.

К примеру, если между собою провзаимодействуют кислород и две в результате получится две молекулы оксида гидрогена, который мы все знаем под названием вода. Данный процесс можно записать с помощью такого химического уравнения: 2Н 2 + О 2 → 2Н 2 О.

Хотя существуют разные критерии, по которым различают химические реакции (тепловой эффект, катализаторы, наличие/отсутствие границ раздела фаз, изменение степеней окисления реагентов, обратимость/необратимость), чаще всего их классифицируют по типу превращения взаимодействующих веществ.

Таким образом, выделяется четыре вида химических процессов.

  • Соединение.
  • Разложение.
  • Обмен.
  • Замещение.

Все вышеперечисленные реакции графически записываются с помощью уравнений. Общая их схема выглядит таким образом: А → Б.

В левой части этой формулы находятся исходные реагенты, а в правой - вещества, образующиеся вследствие реакции. Как правило, для ее начала необходимо воздействие температурой, электричеством или использование катализирующих добавок. Их наличие также должно указываться в химическом уравнении.

разложения (расщепления)

Для этого вида химического процесса характерно образование двух и больше новых соединений из молекул одного вещества.

Говоря более простым языком, реакцию разложения можно сравнить с домиком из конструктора. Решив построить машинку и кораблик, ребенок разбирает начальное строение и из его деталей сооружает желаемое. При этом структура самих элементов конструктора не меняется, так же как это происходит с атомами вещества, участвующего в расщеплении.

Как выглядит уравнение рассматриваемой реакции

Несмотря на то, что на разъединение на более простые составляющие способны сотни соединений, все подобные процессы происходят по одному принципу. Изобразить его можно с помощью схематической формулы: АБВ → А+Б+В.

В ней АБВ - это начальное соединение, подвергшееся расщеплению. А, Б и В - это вещества, образованные из атомов АБВ в процессе реакции разложения.

Виды реакций расщепления

Как уже было сказано выше, чтобы начать какой-то химический процесс, часто необходимо оказать определенное воздействие на реагенты. В зависимости от типа подобной стимуляции, выделяют несколько видов разложения:


Реакция разложения перманганата калия (KMnO4)

Разобравшись с теорией, стоит рассмотреть практические примеры процесса расщепления веществ.

Первым из них станет распад KMnO 4 (в простонародье именуется марганцовкой) вследствие нагревания. Уравнение реакции выглядит таким образом: 2KMnO 4 (t 200°С) → K 2 MnO 4 + MnO 2 + O 2 .

Из представленной химической формулы видно, что для активации процесса необходимо нагреть исходный реагент до 200 градусов по Цельсию. Для лучшего протекания реакции марганцовку помещают в вакуумный сосуд. Из этого можно сделать вывод, что данный процесс является пиролизом.

В лабораториях и на производстве он проводится для получения чистого и контролируемого кислорода.

Термолиз хлората калия (KClO3)

Реакция разложения бертолетовой соли - это еще один пример классического термолиза в чистом виде.

Проходит упоминаемый процесс в два этапа и выглядит таким образом:

  • 2 KClO 3 (t 400 °С) → 3KClO 4 + KCl.
  • KClO 4 (t от 550 °С) → KCl + 2О2

Также термолиз хлората калия можно провести и при более низких температурах (до 200 °С) в один этап, но для этого нужно, чтобы в реакции приняли участие катализирующие вещества - оксиды различных металлов (купрум, ферум, манган и т. п.).

Уравнение такого рода будет выглядеть таким образом: 2KClO 3 (t 150 °С, MnO 2) → KCl + 2О 2 .

Как и перманганат калия, бертолетова соль используется в лабораториях и промышленности для получения чистого кислорода.

Электролиз и радиолиз воды (Н20)

Еще одним интересным практическим примером рассматриваемой реакции будет разложение воды. Его можно произвести двумя способами:

  • Под воздействием на оксид гидрогена электрического тока: Н 2 О → Н 2 + О 2 . Рассматриваемый способ получения кислорода используют подводники на своих субмаринах. Также в будущем его планируют употреблять для получения водорода в больших количествах. Главным препятствием для этого сегодня являются огромные энергетические затраты, необходимые для стимуляции реакции. Когда будет найден способ их минимизировать, электролиз воды станет основным способом производства не только водорода, но и кислорода.
  • Расщепить воду можно и при воздействии на нее альфа-излучением: Н 2 О → Н 2 О + +е - . В результате этого молекула оксида гидрогена теряет один электрон, ионизируясь. В таком виде Н2О + снова вступает в реакцию с другими нейтральными молекулами воды, образуя высокореактивный гидроксид-радикал: Н2О+ Н2О + → Н2О + ОН. Потерянный электрон, в свою очередь, также параллельно реагирует с нейтральными молекулами оксида гидрогена, способствуя их распаду на радикалы Н и ОН: Н 2 О + е - → Н + ОН.

Расщепление алканов: метан

Рассматривая различные способы разъединения сложных веществ, стоит уделить особое внимание реакции разложения алканов.

Под этим названием скрываются предельные углеводороды с общей формулой С Х Н 2Х+2. В молекулах рассматриваемых веществ все атомы карбона соединены одинарными связями.

Представители этого ряда встречаются в природе во всех трех агрегатных состояниях (газ, жидкость, твердое тело).

Все алканы (реакция разложения представителей этого ряда - ниже) легче воды и не растворяются в ней. При этом они сами являются отличными растворителями для других соединений.

Среди основных химических свойств таких веществ (горение, замещение, галогенирование, дегидрирование) - и способность расщепляться. Однако данный процесс может происходить как полностью, так и частично.

Вышеупомянутое свойство можно рассмотреть на примере реакции разложения метана (первый член алканового ряда). Этот термолиз происходит при 1000 °С: СН 4 → С+2Н 2 .

Однако если проводить реакцию разложения метана при более высокой температуре (1500 °С), а потом резко снизить ее, этот газ расщепится не полностью, образуя этилен и водород: 2СН 4 → C 2 H 4 + 3H 2 .

Разложение этана

Второй член рассматриваемого алканового ряда - это С 2 Н 4 (этан). Реакция разложения его происходит также под воздействием высокой температуры (50 °С) и при полном отсутствии кислорода или других окислителей. Выглядит она следующим образом: C 2 H 6 → C 2 H 4 + H 2 .

Представленное выше уравнение реакции разложения этана до водорода и этилена нельзя считать пиролизом в чистом виде. Дело в том, что данный процесс происходит с присутствием катализатора (например, металла никеля Ni или водяного пара), а это противоречит определению пиролиза. Поэтому о представленном выше примере расщепления корректно говорить как о процессе разложения, происходящем при пиролизе.

Стоит отметить, что рассмотренная реакция в промышленности широко используется для получения самого производимого органического соединение в мире - газа этилена. Однако из-за взрывоопасности C 2 H 6 чаще этот простейший алкен синтезируют из других веществ.

Рассмотрев определения, уравнение, виды и различные примеры реакции разложения, можно сделать вывод, что она играет очень большую роль не только для человеческого организма и природы, но и для промышленности. Также с ее помощью в лабораториях удается синтезировать многие полезные вещества, что помогает ученым проводить важных

Химические реакции следует отличать от ядерных реакций. В результате химических реакций общее число атомов каждого химического элемента и его изотопный состав не меняются. Иное дело ядерные реакции - процессы превращения атомных ядер в результате их взаимодействия с другими ядрами или элементарными частицами, например превращение алюминия в магний:


27 13 Аl + 1 1 Н = 24 12 Мg + 4 2 Не


Классификация химических реакций многопланова, то есть в ее основу могут быть положены различные признаки. Но под любой из таких признаков могут быть отнесены реакции как между неорганическими, так и между органическими веществами.


Рассмотрим классификацию химических реакций по различным признакам.

I. По числу и составу реагирующих веществ

Реакции, идущие без изменения состава веществ.


В неорганической химии к таким реакциям можно отнести процессы получения аллотропных модификаций одного химического элемента, например:


С (графит) ↔ С (алмаз)
S (ромбическая) ↔ S (моноклинная)
Р (белый) ↔ Р (красный)
Sn (белое олово) ↔ Sn (серое олово)
3O 2 (кислород) ↔ 2O 3 (озон)


В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ, например:


1. Изомеризация алканов.


Реакция изомеризации алканов имеет большое практическое значение, так как углеводороды изостроения обладают меньшей способностью к детонации.


2. Изомеризация алкенов.


3. Изомеризация алкинов (реакция А. Е. Фаворского).


CH 3 - CH 2 - С= - СН ↔ СН 3 - С= - С- СН 3

этилацетилен диметнлацетилен


4. Изомеризация галогеналканов (А. Е. Фаворский, 1907 г.).

5. Изомеризация цианита аммония при нагревании.



Впервые мочевина была синтезирована Ф. Велером в 1828 г. изомеризацией цианата аммония при нагревании.

Реакции, идущие с изменением состава вещества

Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.


1. Реакции соединения - это такие реакции, при которых из двух и более веществ образуется одно сложное вещество


В неорганической химии все многообразие реакций соединения можно рассмотреть, например, на примере реакций получения серной кислоты из серы:


1. Получение оксида серы (IV):


S + O 2 = SO - из двух простых веществ образуется одно сложное.


2. Получение оксида серы (VI):


SO 2 + 0 2 → 2SO 3 - из простого и сложного веществ образуется одно сложное.


3. Получение серной кислоты:


SO 3 + Н 2 O = Н 2 SO 4 - из двух сложных веществ образуется одно сложное.


Примером реакции соединения, при которой одно сложное вещество образуется из более чем двух исходных, может служить заключительная стадия получения азотной кислоты:


4NО 2 + O 2 + 2Н 2 O = 4НNO 3


В органической химии реакции соединения принято называть «реакциями присоединения». Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ, например этилена:


1. Реакция гидрирования - присоединения водорода:


CH 2 =CH 2 + Н 2 → Н 3 -СН 3

этен → этан


2. Реакция гидратации - присоединения воды.


3. Реакция полимеризации.


2. Реакции разложения - это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.


В неорганической химии все многообразие таких реакций можно рассмотреть на блоке реакций получения кислорода лабораторными способами:


1. Разложение оксида ртути(II) - из одного сложного вещества образуются два простых.


2. Разложение нитрата калия - из одного сложного вещества образуются одно простое и одно сложное.


3. Разложение перманганата калия - из одного сложного вещества образуются два сложных и одно простое, то есть три новых вещества.


В органической химии реакции разложения можно рассмотреть на блоке реакций получения этилена в лаборатории и в промышленности:


1. Реакция дегидратации (отщепления воды) этанола:


С 2 H 5 OH → CH 2 =CH 2 + H 2 O


2. Реакция дегидрирования (отщепление водорода) этана:


CH 3 -CH 3 → CH 2 =CH 2 + H 2


или СН 3 -СН 3 → 2С + ЗН 2


3. Реакция крекинга (расщепления) пропана:


CH 3 -СН 2 -СН 3 → СН 2 =СН 2 + СН 4


3. Реакции замещения - это такие реакции, в результате которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе.


В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:


1. Взаимодействие щелочных или щелочноземельных металлов с водой:


2Na + 2Н 2 O = 2NаОН + Н 2


2. Взаимодействие металлов с кислотами в растворе:


Zn + 2НСl = ZnСl 2 + Н 2


3. Взаимодействие металлов с солями в растворе:


Fе + СuSO 4 = FеSO 4 + Сu


4. Металлотермия:


2Аl + Сr 2 O 3 → Аl 2 O 3 + 2Сr


Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, - способность его атомов водорода замещаться на атомы галогена. Другой пример - бромирование ароматического соединения (бензола, толуола, анилина).



С 6 Н 6 + Вr 2 → С 6 Н 5 Вr + НВr

бензол → бромбензол


Обратим внимание на особенность реакции замещения у органических веществ: в результате таких реакций образуются не простое и сложное вещество, как в неорганической химии, а два сложных вещества.


В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например нитрование бензола. Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма.


4. Реакции обмена - это такие реакции, при которых два сложных вещества обмениваются своими составными частями


Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, то есть только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, Н 2 O).


В неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей:


1. Реакция нейтрализации, идущая с образованием соли и воды.


2. Реакция между щелочью и солью, идущая с образованием газа.


3. Реакция между щелочью и солью, идущая с образованием осадка:


СuSO 4 + 2КОН = Сu(ОН) 2 + К 2 SO 4


или в ионном виде:


Сu 2+ + 2OН - = Сu(ОН) 2


В органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты:


1. Реакция, идущая с образованием слабого электролита - Н 2 O:


СН 3 СООН + NаОН → Nа(СН3СОО) + Н 2 O


2. Реакция, идущая с образованием газа:


2СН 3 СООН + СаСO 3 → 2СН 3 СОО + Са 2+ + СO 2 + Н 2 O


3. Реакция, идущая с образованием осадка:


2СН 3 СООН + К 2 SO 3 → 2К(СН 3 СОО) + Н 2 SO 3



2СН 3 СООН +SiO → 2СН 3 СОО + Н 2 SiO 3

II. По изменению степеней окисления химических элементов, образующих вещества

По этому признаку различают следующие реакции:


1. Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции.


К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:

1. Mg 0 + H + 2 SO 4 = Mg +2 SO 4 + H 2



2. 2Mg 0 + O 0 2 = Mg +2 O -2



Сложные окислительно-восстановительные реакции составляются с помощью метода электронного баланса.


2KMn +7 O 4 + 16HCl - = 2KCl - + 2Mn +2 Cl - 2 + 5Cl 0 2 + 8H 2 O



В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.


1. Они восстанавливаются в соответствующие спирты:




Альдекиды окисляются в соответствующие кислоты:




2. Реакции, идущие без изменения степеней окисления химических элементов.


К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, многие реакции разложения, реакции этерификации:


НСООН + CHgOH = НСООСН 3 + H 2 O

III. По тепловому эффекту

По тепловому эффекту реакции делят на экзотермические и эндотермические.


1. Экзотермические реакции протекают с выделением энергии.


К ним относятся почти все реакции соединения. Редкое исключение составляют эндотермические реакции синтеза оксида азота(II) из азота и кислорода и реакция газообразного водорода с твердым иодом.


Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения. Гидрирование этилена - пример экзотермической реакции. Она идет при комнатной температуре.


2. Эндотермические реакции протекают с поглощением энергии.


Очевидно, что к ним будут относиться почти все реакции разложения, например:


1. Обжиг известняка


2. Крекинг бутана


Количество выделенной или поглощенной в результате реакции энергии называют тепловым эффектом реакции, а уравнение химической реакции с указанием этого эффекта называют термохимическим уравнением:


Н 2(г) + С 12(г) = 2НС 1(г) + 92,3 кДж


N 2(г) + O 2(г) = 2NO(г) - 90,4 кДж

IV. По агрегатному состоянию реагирующих веществ (фазовому составу)

По агрегатному состоянию реагирующих веществ различают:


1. Гетерогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах).


2. Гомогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе).

V. По участию катализатора

По участию катализатора различают:


1. Некаталитические реакции, идущие без участия катализатора.


2. Каталитические реакции, идущие с участием катализатора. Так как все биохимические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы - ферментов, все они относятся к каталитическим или, точнее, ферментативным. Следует отметить, что более 70% химических производств используют катализаторы.

VI. По направлению

По направлению различают:


1. Необратимые реакции протекают в данных условиях только в одном направлении. К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения.


2. Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях. Таких реакций подавляющее большинство.


В органической химии признак обратимости отражают названия - антонимы процессов:


Гидрирование - дегидрирование,


Гидратация - дегидратация,


Полимеризация - деполимеризация.


Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость этих процессов лежит в основе важнейшего свойства живого организма - обмена веществ.

VII. По механизму протекания различают:

1. Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами.


Как вы уже знаете, при всех реакциях происходит разрыв старых и образование новых химических связей. Способ разрыва связи в молекулах исходного вещества определяет механизм (путь) реакции. Если вещество образовано за счет ковалентной связи, то могут быть два способа разрыва этой связи: гемолитический и гетеролитический. Например, для молекул Сl 2 , СН 4 и т. д. реализуется гемолитический разрыв связей, он приведет к образованию частиц с неспаренными электронами, то есть свободных радикалов.


Радикалы чаще всего образуются, когда разрываются связи, при которых общие электронные пары распределены между атомами примерно одинаково (неполярная ковалентная связь), однако многие полярные связи также могут разрываться подобным же образом, в частности тогда, когда реакция проходит в газовой фазе и под действием света, как, например, в случае рассмотренных выше процессов - взаимодействия С 12 и СН 4 - . Радикалы очень реакционноспособны, так как стремятся завершить свой электронный слой, забрав электрон у другого атома или молекулы. Например, когда радикал хлора сталкивается с молекулой водорода, то он вызывает разрыв общей электронной пары, связывающей атомы водорода, и образует ковалентную связь с одним из атомов водорода. Второй атом водорода, став радикалом, образует общую электронную пару с неспаренным электроном атома хлора из разрушающейся молекулы Сl 2 , в результате чего возникает радикал хлора, который атакует новую молекулу водорода и т. д


Реакции, представляющие собой цепь последовательных превращений, называют цепными реакциями. За разработку теории цепных реакций два выдающихся химика - наш соотечественник Н. Н. Семенов и англичанин С. А. Хиншелвуд были удостоены Нобелевской премии.
Аналогично протекает и реакция замещения между хлором и метаном:



По радикальному механизму протекают большинство реакций горения органических и неорганических веществ, синтез воды, аммиака, полимеризация этилена, винилхлорида и др.

2. Ионные реакции идут между уже имеющимися или образующимися в ходе реакции ионами.

Типичные ионные реакции - это взаимодействие между электролитами в растворе. Ионы образуются не только при диссоциации электролитов в растворах, но и под действием электрических разрядов, нагревания или излучений. γ-Лучи, например, превращают молекулы воды и метана в молекулярные ионы.


По другому ионному механизму происходят реакции присоединения к алкенам галогеноводородов, водорода, галогенов, окисление и дегидратация спиртов, замещение спиртового гидроксила на галоген; реакции, характеризующие свойства альдегидов и кислот. Ионы в этом случае образуются при гетеролитическом разрыве ковалентных полярных связей.

VIII. По виду энергии,

инициирующей реакцию, различают:


1. Фотохимические реакции. Их инициирует световая энергия. Кроме рассмотренных выше фотохимических процессов синтеза НСl или реакции метана с хлором, к ним можно отнести получение озона в тропосфере как вторичного загрязнителя атмосферы. В роли первичного в этом случае выступает оксид азота(IV), который под действием света образует радикалы кислорода. Эти радикалы взаимодействуют с молекулами кислорода, в результате чего получается озон.


Образование озона идет все время, пока достаточно света, так как NO может взаимодействовать с молекулами кислорода с образованием того же NO 2 . Накопление озона и других вторичных загрязнителей атмосферы может привести к появлению фотохимического смога.


К этому виду реакций принадлежит и важнейший процесс, протекающий в растительных клетках, - фотосинтез, название которого говорит само за себя.


2. Радиационные реакции. Они инициируются излучениями большой энергии - рентгеновскими лучами, ядерными излучениями (γ-лучами, а-частицами - Не 2+ и др.). С помощью радиационных реакций проводят очень быструю радиополимеризацию, радиолиз (радиационное разложение) и т. д.


Например, вместо двухстадийного получения фенола из бензола его можно получать взаимодействием бензола с водой под действием радиационных излучений. При этом из молекул воды образуются радикалы [ OН] и [ H ], с которыми и реагирует бензол с образованием фенола:


С 6 Н 6 + 2[ОН] → С 6 Н 5 ОН + Н 2 O


Вулканизация каучука может быть проведена без серы с использованием радиовулканизации, и полученная резина будет ничуть не хуже традиционной.


3. Электрохимические реакции. Их инициирует электрический ток. Помимо хорошо известных вам реакций электролиза укажем также реакции электросинтеза, например, реакции промышленного получения неорганических окислителей


4. Термохимические реакции. Их инициирует тепловая энергия. К ним относятся все эндотермические реакции и множество экзотермических реакций, для начала которых необходима первоначальная подача теплоты, то есть инициирование процесса.


Рассмотренная выше классификация химических реакций отражена на схеме.


Классификация химических реакций, как и все другие классификации, условна. Ученые договорились разделить реакции на определенные типы по выделенным ими признакам. Но большинство химических превращений можно отнести к разным типам. Например, составим характеристику процесса синтеза аммиака.


Это реакция соединения, окислительно-восстановительная, экзотермическая, обратимая, каталитическая, гетерогенная (точнее, гетерогенно-каталитическая), протекающая с уменьшением давления в системе. Для успешного управления процессом необходимо учитывать все приведенные сведения. Конкретная химическая реакция всегда многокачественна, ее характеризуют разные признаки.


Виды реакций :Все химические реакции подразделяют на простые и сложные. Простые химические реакции, в свою очередь, обычно подразделяют на четыре типа: реакции соединения , реакции разложения , реакции замещения и реакции обмена .

Д. И. Менделеев определял соединение как реакцию, «при которой из двух веществ происходит одно. Примером химической реакции соединения может служить нагревание порошков железа и серы, - при этом образуется сульфид железа: Fe+S=FeS. К реакциям соединения относят процессы горения простых веществ (серы, фосфора, углерода,...) на воздухе. Например, углерод горит на воздухе С+О 2 =СО 2 (конечно эта реакция протекает постепенно, сначала образуется угарный газ СО). Реакции горения всегда сопровождаются выделением тепла - являются экзотермическими.

Химические реакции разложения , по Менделееву, «составляют случаи, обратные соединению, то есть такие, при которых одно вещество даёт два, или, вообще, данное число веществ - большее их число. Примером реакции разложение меже служить химическая реакция разложения мела (или известняка под воздействием температуры): СаСО 3 → СаО+СО 2 . Для проведения реакции разложения, как правило, требуется нагревание. Такие процессы - эндотермические, т. е. протекают с поглощением теплоты.

В реакциях двух других типов число реагентов равно числу продуктов. Если взаимодействуют простое вещество и сложное -то эта химическая реакция называется химической реакцией замещения : Например опустив стальной гвоздь в раствор медного купороса получаем железный купорос (здесь железо вытеснило медь из её соли) Fe+CuSO 4 → FeSO 4 +Cu.

Реакции между двумя сложными веществами, при которых они обмениваются своими частями, относят к химическим реакциям обмена . Большое их число протекает в водных растворах. Примером химической реакции обмена может служить нейтрализация кислоты щёлочью: NaOH+HCl→ NaCl+Н 2 О. Здесь в реагентах (веществах, стоящих слева) ион водорода из соединения HCl обменивается с ионом натрия из соединения NaOH, в результате чего образуется раствор поваренной соли в воде

Типы реакций и их механизмы приведены в таблице:

химические реакции соединения

Пример:
S + O 2 → SO 2

Из нескольких простых или сложных веществ образуется одно сложное

химические реакции разложения

Пример:
2HN 3 → H 2 + 3N 2

Из сложного вещества образуется несколько простых или сложных веществ

химические реакции замещения

Пример:
Fe + CuSO 4 → Cu + FeSO 4

Атом простого вещества замещает один из атомов сложного

химические реакции ионного обмена

Пример:
H 2 SO 4 + 2NaCl→ Na 2 SO 4 + 2HCl

Сложные вещества обмениваются своими составными частями

Однако очень многие реакции не укладываются в приведённую простую схему. Например, химическая реакция между перманганатом калия (марганцовкой) и иодидом натрия не может быть отнесена ни к одному из указанных типов. Такие реакции, обычно, называют окислительно - восстановительные реакции , например:

2KMnO 4 +10NaI+8H 2 SO 4 → 2MnSO 4 +K 2 SO 4 +5Na 2 SO 4 +5I 2 +8H 2 O.

Признаки химических реакций

Признаки химических реакций . По ним можно судить, прошла ли химическая реакция между реагентами или нет. К таким признакам принято относить следующие:

Изменение цвета (например, светлое железо покрывается во влажном воздухе бурым налётом оксида железа - химическая реакция взаимодействия железа с кислородом).
- Выпадение осадка (например, если через известковый раствор (раствор гидроксида кальция) пропустить углекислый газ, выпадет белый нерастворимый осадок карбоната кальция).
- Выделение газа (например, если капнуть лимонной кислотой на пищевую соду, то выделится углекислый газ).
- Образование слабодиссоциированных веществ (например, реакции, при которых одним из продуктов реакции является вода).
- Свечение раствора.
Примером свечения раствора может служить реакция с использованием такого реагента как раствор люминола (люминол- это сложное химическое вещество, которое может излучать свет при химических реакциях).

Окислительно-восстановительные реакции

Окислительно-восстановительные реакции - составляют особый класс химических реакций. Их характерной особенностью является изменение степени окисления, по крайней мере, пары атомов: окисление одного (потеря электронов) и восстановление другого (присоединение электронов).

Сложные вещества , понижающие свою степень окисления - окислители , а повышающие степень окисления - восстановители . Например:

2Na + Cl 2 → 2NaCl,
- здесь окислитель - хлор (он присоединяет к себе электроны), а восстановитель - натрий (он отдаёт электроны).

Реакция замещения NaBr -1 + Cl 2 0 → 2NaCl -1 + Br 2 0 (характерна для галогенов) тоже относится к окислительно -восстановительным реакциям. Здесь хлор - окислитель (принимает 1 электрон), а бромид натрия (NaBr) - восстановитель (атом брома отдаёт электрон).

Реакция разложения дихромата аммония ((NH 4) 2 Cr 2 O 7) тоже относится к окислительно-восстановительным реакциям:

(N -3 H 4) 2 Cr 2 +6 O 7 → N 2 0 + Cr 2 +3 O 3 + 4H 2 O

Ещё одна из распространённых классификаций химических реакций - это их разделение по тепловому эффекту. Разделяют эндотермические реакции и экзотермические реакции . Эндотермические реакции - химические реакции, сопровождающиеся поглощением окружающего тепла (вспомните охлаждающие смеси). Экзотермические (наоборот) - химические реакции, сопровождающиеся выделением тепла (например - горение).

Опасные химические реакции :"БОМБА В РАКОВИНЕ"- забавно или не очень?!

Существуют некоторые химические реакции, которые протекают спонтанно при смешивании реагентов. При этом образуются достаточно опасные смеси, которые могут взрываться, воспламеняться или отравлять. Вот одна и них!
В некоторых американских и английских клиниках наблюдались странные явления. Время от времени из раковин раздавались звуки, напоминающие пистолетные выстрелы, а в одном случае неожиданно взорвалась сливная трубка. К счастью, никто не пострадал. Расследование показало, что виновником всего этого был очень слабый (0,01%) раствор азида натрия NaN 3 , который использовали в качестве консерванта физиологических растворов.

Излишки раствора азида в течение многих месяцев, а то и лет сливали в раковины - иногда до 2 л в день.

Сам по себе азид натрия - соль азидоводородной кислоты HN 3 - не взрывается. Однако азиды тяжёлых металлов (меди, серебра, ртути, свинца и др.) - весьма неустойчивые кристаллические соединения, которые взрываются при трении, ударе, нагревании, действии света. Взрыв может произойти даже под слоем воды! Азид свинца Pb(N 3) 2 используется как инициирующее взрывчатое вещество, с помощью которого подрывают основную массу взрывчатки. Для этого достаточно всего двух десятков миллиграммов Pb(N 3) 2 . Это соединение более взрывчато, чем нитроглицерин, а скорость детонации (распространения взрывной волны) при взрыве достигает 45 км/с - в 10 раз больше, чем у тротила.

Но откуда в клиниках могли взяться азиды тяжёлых металлов? Оказалось, во всех случаях сливные трубки под раковинами были изготовлены из меди или латуни (такие трубки легко гнутся, особенно после нагревания, поэтому их удобно устанавливать в сливной системе). Выливаемый в раковины раствор азида натрия, протекая по таким трубкам, постепенно реагировал с их поверхностью, образуя азид меди. Пришлось менять трубки на пластмассовые. Когда в одной из клиник проводили такую замену, оказалось, что снятые медные трубки сильно забиты твёрдым веществом. Специалисты, которые занимались «разминированием», чтобы не рисковать, подорвали эти трубки на месте, сложив их в металлический бак массой 1 т. Взрыв был настолько силён, что сдвинул бак на несколько сантиметров!

Медиков не очень интересовала сущность химических реакций, приводящих к образованию взрывчатки. В химической литературе также не удалось найти описания этого процесса. Но можно предположить, исходя из сильных окислительных свойств HN 3 , что имела место такая реакция: анион N-3, окисляя медь, образовал одну молекулу N2 и атом азота, который вошёл в состав аммиака. Это соответствует уравнению реакции: 3NaN 3 +Cu+3Н 2 О→ Cu(N 3) 2 +3NaOH+N 2 +NH 3 .

С опасностью образования бомбы в раковине приходится считаться всем, кто имеет дело с растворимыми азидами металлов, в том числе и химикам, поскольку азиды используются для получения особо чистого азота, в органическом синтезе, в качестве порообразователя (вспенивающего агента для производства газонаполненных материалов: пенопластов, пористой резины и т. п.). Во всех подобных случаях надо проследить, чтобы сливные трубки были пластмассовыми.

Сравнительно недавно азиды нашли новое применение в автомобилестроении. В 1989 г. в некоторых моделях американских автомобилей появились надувные подушки безопасности. Такая подушка, содержащая азид натрия, в сложенном виде почти незаметна. При лобовом столкновении электрический запал приводит к очень быстрому разложению азида: 2NaN 3 =2Na+3N 2 . 100 г порошка выделяют около 60 л азота, который примерно за 0,04 с надувает подушку перед грудью водителя, спасая тем самым ему жизнь.



Вверх