Кремний и его соединения. Соединения кремния с углеродом

  • Обозначение - Si (Silicon);
  • Период - III;
  • Группа - 14 (IVa);
  • Атомная масса - 28,0855;
  • Атомный номер - 14;
  • Радиус атома = 132 пм;
  • Ковалентный радиус = 111 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 2 ;
  • t плавления = 1412°C;
  • t кипения = 2355°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,90/1,74;
  • Степень окисления: +4, +2, 0, -4;
  • Плотность (н. у.) = 2,33 г/см 3 ;
  • Молярный объем = 12,1 см 3 /моль.

Соединения кремния:

В чистом виде впервые кремний был выделен в 1811 году (французы Ж. Л. Гей-Люссак и Л. Ж. Тенар). Чистый элементарный кремний был получен в 1825 г. (швед Й. Я. Берцелиус). Свое название "кремний" (в переводе с древнегреческого - гора) химический элемент получил в 1834 году (российский химик Г. И. Гесс).

Кремний является самым распространенным (после кислорода) химическим элементом на Земле (содержание в земной коре 28-29% по массе). В природе кремний чаще всего присутствует в виде кремнезема (песок, кварц, кремень, полевые шпаты), а также в силикатах и алюмосиликатах. В чистом виде кремний встречается чрезвычайно редко. Многие природные силикаты в чистом виде являются драгоценными камнями: изумруд, топаз, аквамари - это все кремний. Чистый кристаллический оксид кремния (IV) встречается в виде горного хрусталя и кварца. Оксид кремния, в котором присутствуют различные примеси, образует драгоценные и полудрагоценные камни - аметист, агат, яшма.


Рис. Строение атома кремния.

Электронная конфигурация кремния - 1s 2 2s 2 2p 6 3s 2 3p 2 (см. Электронная структура атомов). На внешнем энергетическом уровне у кремния находятся 4 электрона: 2 спаренных на 3s-подуровне + 2 неспаренных на p-орбиталях. При переходе атома кремния в возбужденное состояние один электрон с s-подуровня "покидает" свою пару и переходит на p-подуровень, где имеется одна свободная орбиталь. Т. о., в возбужденном состоянии электронная конфигурация атома кремния приобретает следующий вид: 1s 2 2s 2 2p 6 3s 1 3p 3 .


Рис. Переход атома кремния в возбужденное состояние.

Т. о., кремний в соединениях может проявлять валентность 4 (чаще всего) или 2 (см. Валентность). Кремний (так же, как и углерод), реагируя с другими элементами, образует химические связи в которых может как отдавать свои электроны, так и принимать их, но при этом способность принимать электроны у атомов кремния выражена слабее, чем у атомов углерода , по причине большего размера атома кремния.

Степени окисления кремния:

  • -4 : SiH 4 (силан), Ca 2 Si, Mg 2 Si (силикаты металлов);
  • +4 - наиболее устойчивая: SiO 2 (оксид кремния), H 2 SiO 3 (кремниевая кислота), силикаты и галогениды кремния;
  • 0 : Si (простое вещество)

Кремний, как простое вещество

Кремний представляет из себя темно-серое кристаллическое вещество с металлическим блеском. Кристаллический кремний является полупроводником.

Кремний образует только одну аллотропную модификацию, подобную алмазу, но при этом не такую прочную, т. к. связи Si-Si не так прочны, как в алмазной молекуле углерода (См. Алмаз).

Аморфный кремний - порошок бурого цвета, с температурой плавления 1420°C.

Кристаллический кремний получают из аморфного путем его перекристаллизации. В отличие от аморфного кремния, который является достаточно активным химическим веществом, кристаллический кремний более инертен в плане взаимодействия с другими веществами.

Строение кристаллической решетки кремния повторяет структуру алмаза, - каждый атом окружен четырьмя другими атомами, расположенными в вершинах тетраэдра. Атомы связываются друг с другом ковалентными связями, которые не так прочны, как углеродные связи в алмазе. По этой причине, даже при н.у. некоторые ковалентные связи в кристаллическом кремнии разрушаются, в результате чего высвобождается некоторая часть электронов, благодаря чему кремний обладает небольшой электропроводностью. По мере нагревания кремния, на свету или при добавлении некоторых примесей, кол-во разрушаемых ковалентных связей увеличивается, вследствие чего и увеличивается кол-во свободных электронов, следовательно, растет и электропроводность кремния.

Химические свойства кремния

Как и углерод, кремний может быть и восстановителем, и окислителем, в зависимости от того, с каким веществом вступает в реакцию.

При н.у. кремний взаимодействует только с фтором, что объясняется достаточно прочной кристаллической решеткой кремния.

В реакцию с хлором и бромом кремний вступает при температурах, превышающих 400°C.

С углеродом и азотом кремний взаимодействует только при очень высоких температурах.

  • В реакциях с неметаллами кремний выступает в роли восстановителя :
    • при нормальных условиях из неметаллов кремний реагирует только с фтором, образуя галогенид кремния:
      Si + 2F 2 = SiF 4
    • при высоких температурах кремний реагирует с хлором (400°C), кислородом (600°C), азотом (1000°C), углеродом (2000°C):
      • Si + 2Cl 2 = SiCl 4 - галогенид кремния;
      • Si + O 2 = SiO 2 - оксид кремния;
      • 3Si + 2N 2 = Si 3 N 4 - нитрид кремния;
      • Si + C = SiC - карборунд (карбид кремния)
  • В реакциях с металлами кремний является окислителем (образуются салициды :
    Si + 2Mg = Mg 2 Si
  • В реакциях с концентрированными р-рами щелочей кремний реагирует с выделением водорода, образуя растворимые соли кремниевой кислоты, называемые силикатами :
    Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2
  • С кислотами (за исключением HF) кремний не реагирует.

Получение и применение кремния

Получение кремния:

  • в лаборатории - из кремнезема (алюмотерапия):
    3SiO 2 + 4Al = 3Si + 2Al 2 O 3
  • в промышленности - восстановлением оксида кремния коксом (технически чистый кремний) при высокой температуре:
    SiO 2 + 2C = Si + 2CO
  • самый чистый кремний получают восстановлением тетрахлорида кремния водородом (цинком) при высокой температуре:
    SiCl 4 +2H 2 = Si+4HCl

Применение кремния:

  • изготовление полупроводниковых радиоэлементов;
  • в качестве металлургических добавок при производстве жаропрочных и кислотоустойчивых соединений;
  • в производстве фотоэлементов для солнечных батарей;
  • в качестве выпрямителей переменного тока.

Введение

Глава 2. Химические соединения углерода

2.1 Кислородные производные углерода

2.1.1 Степень окисления +2

2.1.2 Степень окисления +4

2.3 Карбиды металлов

2.3.1 Карбиды, растворимые в воде и разбавленных кислотах

2.3.2 Карбиды, нерастворимые в воде и в разбавленных кислотах

Глава 3. Соединения кремния

3.1 Кислородные соединения кремния

Список литературы

Введение

Химия - одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы), образуемые ими простые и сложные вещества (молекулы), их превращения и законы, которым подчиняются эти превращения.

По определению Д.И. Менделеева (1871), "химию в современном ее состоянии можно... назвать учением об элементах".

Происхождение слова "химия" выяснено не окончательно. Многие исследователи полагают, что оно происходит от старинного наименования Египта - Хемиа (греческое Chemia, встречается у Плутарха), которое производится от "хем" или "хаmе" - черный и означает "наука черной земли" (Египта), "египетская наука" .

Современная химия тесно связана, как с другими естественными науками, так и со всеми отраслями народного хозяйства.

Качественная особенность химической формы движения материи, и ее переходов в другие формы движения обуславливает разносторонность химической науки и ее связи с областями знания, изучающими и более низшие, и более высшие формы движения. Познание химической формы движения материи обогащает общее учение о развитии природы, эволюции вещества во Вселенной, содействует становлению целостной материалистической картины мира. Соприкосновение химии с другими науками порождает специфические области взаимного их проникновения. Так, области перехода между химией и физикой представлены физической химиейи химической физикой. Между химией и биологией, химией и геологией возникли особые пограничные области - геохимия, биохимия, биогеохимия, молекулярная биология. Важнейшие законы химии формулируются на математическом языке, и теоретическая химия не может развиваться без математики. Химия оказывала и оказывает влияние на развитие философии, и сама испытывала и испытывает её влияние.

Исторически сложились два основных раздела химии: неорганическая химия, изучающая в первую очередь химические элементы и образуемые ими простые и сложные вещества (кроме соединений углерода), и органическая химия, предметом изучения которой являются соединения углерода с др. элементами (органические вещества).

До конца 18 века термины "неорганическая химия" и "органическая химия" указывали лишь на то, из какого "царства" природы (минерального, растительного или животного) получались те или иные соединения. Начиная с 19 в. эти термины стали указывать на присутствие или отсутствие углерода в данном веществе. Затем они приобрели новое, более широкое значение. Неорганическая химия соприкасается прежде всего с геохимией и далее с минералогией и геологией, т.е. с науками о неорганической природе. Органическая химия представляет отрасль химии, которая изучает разнообразные соединения углерода вплоть до сложнейших биополимерных веществ. Через органическую и биоорганическую химию химия граничит с биохимией и далее с биологией, т.е. с совокупностью наук о живой природе. На стыке между неорганической и органической химией находится область элементоорганических соединений.

В химии постепенно сформировались представления о структурных уровнях организации вещества. Усложнение вещества, начиная от низшего, атомарного, проходит ступени молекулярных, макромолекулярных, или высокомолекулярных, соединений (полимер), затем межмолекулярных (комплекс, клатрат, катенан), наконец, многообразных макроструктур (кристалл, мицелла) вплоть до неопределённых нестехиометрических образований. Постепенно сложились и обособились соответствующие дисциплины: химия комплексных соединений, полимеров, кристаллохимия, учения о дисперсных системах и поверхностных явлениях, сплавах и др.

Изучение химических объектов и явлений физическими методами, установление закономерностей химических превращений, исходя из общих принципов физики, лежит в основе физической химии. К этой области химии относится ряд в значительной мере самостоятельных дисциплин: термодинамика химическая, кинетика химическая, электрохимия, коллоидная химия, квантовая химия и учение о строении и свойствах молекул, ионов, радикалов, радиационная химия, фотохимия, учения о катализе, химических равновесиях, растворах и др. Самостоятельный характер приобрела аналитическая химия, методы которой широко применяются во всех областях химии и химической промышленности. В областях практического приложения химии возникли такие науки и научные дисциплины, как химическая технология с множеством её отраслей, металлургия, агрохимия, медицинская химия, судебная химия и др.

Как уже было сказано выше, химия рассматривает химические элементы и образуемые ими вещества, а также законы, которым подчиняются эти превращения. Один из этих аспектов (а именно, химические соединения на основе кремния и углерода) и будет рассмотрен мной в данной работе.

Глава 1. Кремний и углерод - химические элементы

1.1 Общие сведения об углероде и кремнии

Углерод (С) и кремний (Si) входят в группу IVA.

Углерод не принадлежит к числу очень распространенных элементов. Несмотря на это, значение его огромно. Углерод-основа жизни на земле. Он входит в состав весьма распространенных в природе карбонатов (Са, Zn, Mg, Fe и др.), в атмосфере существует в виде СО 2 , встречается в виде природных углей (аморфного графита), нефти и природного газа, а также простых веществ (алмаза, графита).

Кремний по распространенности в земной коре занимает второе место (после кислорода). Если углерод - основа жизни, то кремний-основа земной коры. Он встречается в громадном многообразии силикатов (рис 4) и алюмосиликатов, песка.

Аморфный кремний - порошок бурого цвета. Последний легко получить в кристаллическом состоянии в виде серых твердых, но довольно хрупких крис таллов. Кристаллический кремний - полупроводник.

Таблица 1. Общие химические данные об углероде и кремнии.

Устойчивая при обычной температуре модификация углерода - графит - представляет собой непрозрачную, серую жирную массу. Алмаз - самое твердое вещество на земле - бесцветен и прозрачен. Кристаллические структуры графита и алмаза приведены на рис.1.

Рисунок 1. Структура алмаза (а); структура графита (б)

Углерод и кремний имеют свои определенные производные.

Таблица 2. Наиболее характерные производные углерода и кремния

1.2 Получение, химические свойства и применение простых веществ

Кремний получают восстановлением оксидов углеродом; для получения в особо чистом состояний после восстановления вещество переводят в тетрахлорид и снова восстанавливают (водородом). Затем сплавляют в слитки и подвергают очистке методом зонной плавки. Слиток металла нагревают с одного конца так, чтобы в нем образовалась зона расплавленного металла. При перемещении зоны к другому концу слитка примесь, растворяясь в расплавленном металле лучше, чем в твердом, выводится, и тем самым металл очищается.

Углерод инертен, но при очень высокой, температуре (в аморфном состоянии) взаимодействует с большинством металлов с образованием твердых растворов или карбидов (СаС 2 , Fе 3 С и т.д.), а также со многими металлоидами, например:

2С+ Са = СaC 2, С + 3Fe = Fe 3 C,

Кремний более реакционно способен. С фтором он реагирует уже при обычной температуре: Si+2F 2 =SiF 4

У кремния очень большое сродство также и к кислороду:

Реакция с хлором и серой протекает около 500 К. При очень высокой температуре кремний взаимодействует с азотом и углеродом:

С водородом кремний непосредственно не взаимодействует. Кремний растворяется в щелочах:

Si+2NaOH+H 2 0=Na 2 Si0 3 +2H 2 .

Кислоты, кроме плавиковой, на него не действуют. С HF идет реакция

Si+6HF=H 2 +2H 2 .

Углерод в составе различных углей, нефти, природных (в основном СН4), а также искусственно полученных газов - важнейшая топливная база нашей планеты

При нормальных условиях аллотропные модификации углерода – графит и алмаз – довольно инертны. Но при повышении t активно вступают в химические реакции с простыми и сложными веществами.

Химические свойства углерода

Так как электроотрицательность углерода невысока, то простые вещества являются хорошими восстановителями. Легче окисляется мелкокристаллический углерод, труднее – графит, ещё труднее – алмаз.

Аллотропные модификации углерода окисляются кислородом (горят) при определённых температурах воспламенения: графит воспламеняется при 600 °С, алмаз – при 850-1000 °С. Если кислород находится в избытке, образуется оксид углерода(IV), если в недостатке – оксид углерода(II):

С + О2 = СО2

2С + О2 = 2СО

Углерод восстанавливает оксиды металлов. При этом получают металлы в свободном виде. Например, при прокаливании оксида свинца с коксом выплавляется свинец:

PbO + C = Pb + CO

восстановитель: C0 – 2e => C+2

окислитель: Pb+2 + 2e => Pb0

Окислительные свойства углерод проявляет и по отношению к металлам. При этом он образует разного рода карбиды. Так, с алюминием проходит реакции при высокой температуре:

3C + 4Al = Al4C3

C0 + 4e => C-4 3

Al0 – 3e => Al+3 4

Химические свойства соединений углерода

1) Так как прочность монооксида углерода велика, то он вступает в химические реакции при высоких температурах. При значительном нагревании проявляются высокие восстановительные свойства монооксида углерода. Так, он вступает в реакцию с оксидами металлов:

CuO + CO => Cu + CO2

При повышенной температуре (700 °С) он воспламеняется в кислороде и горит голубым пламенем. По этому пламени можно узнать, что в результате реакции образуется углекислый газ:

CO + O2 => CO2

2) Двойные связи в молекуле диоксида углерода достаточно прочны. Для их разрыва требуется значительная энергия (525,6 кДж/моль). Поэтому диоксид углерода довольно инертен. Реакции, в которые он вступает, часто происходят при высоких температурах.

Диоксид углерода проявляет кислотные свойства в реакции с водой. При этом образуется раствор угольной кислоты. Реакция происходит обратимо.

Диоксид углерода как кислотный оксид реагирует со щелочами и основными оксидами. При пропускании углекислого газа через раствор щёлочи может образоваться либо средняя, либо кислая соль.

3) Угольная кислота обладает всеми свойствами кислот и взаимодействует со щелочами и основными оксидами.

Химические свойства кремния

Кремний более активен, чем углерод, и окисляется кислородом уже при 400 °С. Окислять кремний могут другие неметаллы. Эти реакции обычно идут при более высокой температуре, чем с кислородом. В таких условиях кремний взаимодействует с углеродом, в частности с графитом. При этом образуется карборунд SiC– очень твёрдое вещество, уступающее по твёрдости только алмазу.

Кремний может быть и окислителем. Это проявляется в реакциях с активными металлами. Например:

Si + 2Mg = Mg2Si

Более высокая активность кремния по сравнению с углеродом проявляется в том, что он, в отличие от углерода, вступает в реакции с щелочами:

Si + NaOH + H2O => Na2SiO3 + H2

Химические свойства соединений кремния

1) Прочные связи между атомами в кристаллической решётке диоксида кремния объясняют невысокую химическую активность. Реакции, в которые вступает этот оксид, происходят при высоких температурах.

Оксид кремния является кислотным оксидом. Как известно, в реакцию с водой он не вступает. Его кислотная природа проявляется в реакции со щелочами и основными оксидами:

SiO2 + 2NaOH = Na2SiO3 + H2O

Реакции с основными оксидами проходят при высоких температурах.

Окислительные свойства оксид кремния проявляет слабо. Он восстанавливается некоторыми активными металлами.

Кремний - химический элемент IV группы Периодической системы элементов Д.И. Менделеева. Открыт в 1811 г. Ж. Гей-Люсаком и Л. Тернаром. Его порядковый номер 14, атомная масса 28,08, атомный объем 12,04 10 -6 м 3 /моль. Кремний - металлоид, принадлежит к подгруппе углерода. Его валентность по кислороду +2 и +4. По распространенности в природе кремний уступает только кислороду. Его массовая доля в земной коре составляет 27,6 %. Земная кора, по мнению В.И. Вернадского, более чем на 97 % состоит из кремнезема и силикатов. Кислородные и органические соединения кремния входят также в состав растений и животных.

Искусственно полученный кремнии может быть как аморфным, так и кристаллическим. Аморфный кремний - коричневый, тонко дисперсный, сильно гигроскопичный порошок, по рентгеноструктурным данным, состоит из мельчайших кристалликов кремния. Он может быть получен восстановлением при высоких температурах SiCl 4 парами цинка.

Кристаллический кремний имеет серо-стальной цвет и отличается металлическим блеском. Плотность кристаллического кремния при 20°С составляет 2,33 г/см 3 , жидкого кремния при 1723-2,51, а при 1903К — 2,445 г/см 3 . Температура плавления кремния - 1690 К, кипения - 3513 К. В соответствии с данными, давление паров кремния при Т = 2500÷4000 К описывается уравнением lg p Si = -20130/ Т + 7,736, кПа. Теплота возгонки кремния 452610, плавления 49790, испарения 385020 Дж/моль.

Поликристаллы кремния отличаются высокой твердостью (при 20°С HRC = 106). Однако кремний очень хрупок, поэтому имеет высокую прочность при сжатии (σ СЖ В ≈690 МПа) и очень низкое сопротивление разрыву (σ В ≈ 16,7 МПа).

При комнатной температуре кремний инертен, реагирует только со фтором, образуя летучий 81Р4. Из кислот реагирует только с азотной в смеси с плавиковой кислотой. Со щелочами, однако, кремний реагирует довольно легко. Одна из его реакции со щелочами

Si + NaOH + H 2 O = Na 2 SiO 3 + 2H 2

используется для получения водорода. Вместе с этим с неметаллами кремний способен давать большое количество химически прочных соединений. Из подобных соединений необходимо отметить галогениды (от SiX 4 до Si n X 2n+2 , где X - галоген, а n ≤ 25), их смешанные соединения SiCl 3 B, SiFCl 3 и др., оксихлориды Si 2 OCl 3 , Si 3 O 2 Cl 3 и др., нитриды Si 3 N 4 , Si 2 N 3 , SiN и гидриды с общей формулой Si n H 2n+2 , а из соединений, встречающихся при производстве ферросплавов, - летучие сульфиды SiS и SiS 2 и тугоплавкий карбид SiC.

Кремний способен также давать соединения с металлами - силициды, наиболее важными из них являются силициды железа, хрома, марганца, молибдена, циркония, а также РЗМ и ЩЗМ. Это свойство кремния - способность давать химически очень прочные соединения и растворы с металлами - широко используется в технике производства низкоуглеродистых ферросплавов, а также при восстановлении легкокипящих щелочноземельных (Са, Mg, Ва) и трудновосстановимых металлов (Zr, Al и др.).

Сплавы кремния с железом изучены П.В. Гельдом и его школой, особое внимание было обращено на часть системы Fe-Si, относящуюся к сплавам с его высоким содержанием. Это связано с тем, что, как видно из диаграммы Fe-Si (рисунок 1), в сплавах этого состава происходит целый ряд превращений, значительно влияющих на качество ферросилиция различных марок. Так, дисилицид FeSi 2 стабилен только при низких температурах (< 918 или 968 °С, см. рисунок 1). При высоких температурах устойчива его высокотемпературная модификация - лебоит. Содержание кремния в этой фазе колеблется в пределах 53-56 %. В дальнейшем лебоит будем обозначать химической формулой Fe 2 Si 5 , что практически соответствует максимальной концентрации кремния в лебоите.

При охлаждении сплавов с содержанием > 55,5 % Si лебоит при Т < 1213 К разлагается по эвтектоидной реакции

Fe 2 Si 5 → FeSi 2 +Si (2)

а сплавов 33,86-50,07 % Si при Т < 1255 К - по перитектоидной реакции

Fe 2 Si 5 + FeSi = ЗFeSi 2 (3)

Cплавы промежуточного состава (50,15-55,5 % Si) сначала при 1255 К претерпевают перитектоидное (3), а затем при 1213 К - эвтектоидное (2) превращения. Эти превращения Fe 2 Si 5 по реакциям (2) и (3) сопровождаются изменениями объема силицида. Особенно велико подобное изменение в ходе реакции (2) - примерно 14 %, поэтому сплавы, содержащие лебоит, теряют сплошность, растрескиваются и даже рассыпаются. При медленной, равновесной кристаллизации (см. рисунок 1) лебоит может выделяться при кристаллизации как сплава ФС75, так и ФС45.

Однако растрескивание, связанное с эвтектоидным распадом лебоита, лишь одна из причин рассыпания. Второй причиной, по-видимому главной, является то, что образование трещин по границам зерна создает возможность ликватам, выделяющимся по этим границам - фосфору, мышьяку, сульфидам и карбидам алюминия и др., - реагировать с влагой воздуха по реакциям, в результате которых в атмосферу выделяются H 2 , PH 3 , PH 4 , AsH 4 и т.п., а в трещинах — рыхлые оксиды Al 2 O 3 , SiO 2 и другие соединения, распирающие их. Предотвратить рассыпание сплавов можно их модифицированием магнием, легированием добавками элементов, измельчающих зерно (V, Ti, Zг и др.) или делающих его более пластичным. Измельчение зерна уменьшает на его границах концентрацию примесей и их соединений и влияет на свойства сплавов так же, как общее понижение в сплаве концентрации примесей (P, Al, Ca), способствующих рассыпанию. Термодинамические свойства сплавов Fe-Si (теплота смешения, активность, растворимость углерода) изучены подробно, их можно найти в работах. Сведения о растворимости углерода в сплавах Fe-Si приведены на рисунке 2, об активности кремния - в таблице 1.

Рисунок 1. — Диаграмма состояния системы Fe-Si


Физико-химические свойства кислородных соединений кремния изучал П.В. Гельд с сотрудниками. Несмотря на важность системы Si-O, ее диаграмма до сих пор не построена. В настоящее время известны два кислородных соединения кремния - кремнезем SiO 2 и монооксид SiO. В литературе имеются также указания о существовании и других кислородных соединений кремния - Si 2 O 3 и Si 3 O 4 , однако сведения об их химических и физических свойствах отсутствуют.

В природе кремний представлен только кремнеземом SiO 2 . Это соединение кремния отличается:

1) высокой твердостью (по шкале Мооса 7) и тугоплавкостью (T пл = 1996 К);

2) высокой температурой кипения (Т КИП = 3532 К). Давление паров кремнезема может бьггь описано уравнениями (Па):

3) образованием большого количества модификаций:

Особенностью аллотропных превращений SiO 2 является то, что они сопровождаются значительными изменениями плотности и объема вещества, что может вызвать растрескивание и измельчение породы;

4) высокой склонностью к переохлаждению. Поэтому имеется возможность в результате быстрого охлаждения зафиксировать структуру как жидкого расплава (стекло), так и высокотемпературных модификаций в-кристобалита и тридимита. Наоборот, при быстром нагревании можно расплавить кварц, минуя структуры тридимита и кристобалита. Температура плавления SiO 2 при этом понижается примерно на 100 °С;

5) высоким электросопротивлением. Например, при 293 К оно составляет 1 10 12 Ом*м. Однако с повышением температуры электросопротивление SiO 2 понижается, а в жидком состоянии кремнезем — неплохой проводник;

6) высокой вязкостью. Так, при 2073 К вязкость равна 1 10 4 Па с, а при 2273 К - 280 Па с.

Последнее, по мнению Н.В. Соломина, объясняется тем, что SiO 2 , подобно органическим полимерам, способен образовывать цепочки, которые при 2073 К состоят из 700, а при 2273 К — из 590 молекул SiO 2 ;

7) высокой термической устойчивостью. Энергия Гиббса образования SiO 2 из элементов с учетом агрегатного их состояния в соответствии с данными с высокой точностью описывается уравнениями:

Эти данные, как видно из таблицы 2, несколько отличаются от данных авторов. Для термодинамических расчетов могут использоваться и двухчленные уравнения:

Монооксид кремния SiO обнаружен в 1895 г. Поттером в газовой фазе электропечей. В настоящее время надежно установлено, что SiO существует и в конденсированных фазах. По исследованиям П.В. Гельда, оксид отличается невысокой плотностью (2,15 г/см 3), высоким электросопротивлением (10 5 -10 6 Ом*м). Конденсированный оксид хрупок, его твердость по шкале Мооса ∼ 5. Температуру плавления вследствие высокой его летучести экспериментально определить не удалось. По данным О. Кубашевского, она равна 1875 К, по мнению Бережного, - 1883 К. Теплота плавления SiO в несколько раз выше ΔH 0 SiO2 по данным она равна 50242 Дж/моль. По-видимому, вследствие летучести она завышена. Имеет стекловидный излом, его цвет изменяется от белого до шоколадного, что связано, вероятно, с его окислением кислородом воздуха. Свежий излом SiO обычно имеет гороховатый цвет с жирным блеском. Термодинамически стабилен оксид только при высоких температурах в виде SiO (Г) . При охлаждении оксид диспропорционирует по реакции

2SiO (Г) = SiO (Ж) + SiO 2 (6)

Температуру кипения SiO можно ориентировочно оценить из уравнения:

Газообразный оксид кремния термодинамически очень стоек. Энергию Гиббса его образования можно описать уравнениями (см. таблицу 2):

из которых видно, что химическая прочность SiO подобно CO с ростом температуры повышается, что делает его прекрасным восстановителем для многих веществ.

Для термодинамического анализа можно использовать и двухчленные уравнения:

Состав газов над SiO 2 оценивался И.С. Куликовым. В зависимости от температуры содержание SiO над SiO 2 описывается уравнениями:

Карбид кремния, как и SiO, является одним из промежуточных соединений, образующихся в ходе восстановления SiO 2 . Карбид отличается высокой температурой плавления.

В зависимости от давления он стоек вплоть до 3033-3103 К (рисунок 3). При высоких температурах карбид кремния сублимирует. Однако давление паров Si (Г) , Si 2 C (Г) , SiC 2(Г) над карбидом при Т < 2800К невелико, что следует из уравнения

Карбид существует в виде двух модификаций - кубической низкотемпературной β-SiC и гексагональной высокотемпературной α-SiC. В ферросплавных печах обычно встречается лишь β-SiC. Как показали расчеты с использованием данных, энергия Гиббса образования описывается уравнениями:

которые заметно отличаются от данных. Из этих уравнений следует, что карбид термически стоек до 3194 К. По физическим свойствам карбид отличается высокой твердостью (~ 10), высоким электросопротивлением (при 1273К p≈0,13 ⋅ 10 4 мкОм ⋅ м), повышенной плотностью (3,22 г/см 3) и высокой стойкостью как в восстановительной, так и в окислительной атмосфере.

По внешнему виду чистый карбид бесцветен, обладает полупроводниковыми свойствами, которые сохраняются и при высоких температурах. Технический карбид кремния содержит примеси и поэтому окрашен в зеленый или черный цвет. Так, зеленый карбид содержит 0,5-1,3 % примесей (0,1-0,3 % C, 0,2-1,2 % Si + SiO 2 , 0,05-0,20 % Fe 2 O 3 , 0,01- 0,08 % Al 2 O 3 и др.). В черном карбиде содержание примесей более высокое (1-2 %).

В качестве восстановителя при производстве сплавов кремния применяют углерод. Он же является основным веществом, из которого изготавливают электроды и футеровки электропечей, выплавляющих кремний и его сплавы. Углерод довольно распространен в природе, его содержание в земной коре составляет 0,14 %. В природе он встречается как в свободном состоянии, так и в виде органических и неорганических соединений (в основном карбонатов).

Углерод (графит) имеет гексагональную кубическую решетку. Рентгеновская плотность графита 2,666 г/см 3 , пикнометрическая — 2,253 г/см 3 . Он отличается высокими температурами плавления (~ 4000 °С) и кипения (~ 4200 °С), повышающимся с ростом температуры электросопротивлением (при 873 К p≈9,6 мкОм⋅м, при 2273 К p≈ 15,0 мкОм⋅м), довольно прочен. Его временное сопротивление на усах может составить 480-500 МПа. Однако электродный графит имеет σ в = 3,4÷17,2 МПа. Твердость графита по шкале Мооса ~ 1.

Углерод - прекрасный восстановитель. Это связано с тем, что прочность одного из его кислородных соединений (СО) повышается с ростом температуры. Это видно из энергии Гиббса его образования, которая, как показали наши расчеты с использованием данных, хорошо описывается как трехчленным

так и двухчленными уравнениями:

Диоксид углерода СO 2 термодинамически прочен лишь до 1300 К. Энергия Гиббса образования CO 2 описывается уравнениями:

Общая характеристика четвертой группы главной подгруппы:

  • а) свойства элементов с точки зрения строения атома;
  • б) степени окисления;
  • в) свойства оксидов;
  • г) свойства гидроксидов;
  • д) водородные соединения.

а) Углерод (С), кремний (Si), германий (Ge), олово (Sn), свинец (РЬ) - элементы 4 группы главной подгруппы ПСЭ. На внешнем электронном слое атомы этих элементов имеют 4 электрона: ns 2 np 2 . В подгруппе с ростом порядкового номера элемента увеличивается атомный радиус, неметаллические свойства ослабевают, а металлические усиливаются: углерод и кремний - неметаллы, германий, олово, свинец - металлы.

б) Элементы этой подгруппы проявляют как положительную, так и отрицательную степени окисления: -4, +2, +4.

в) Высшие оксиды углерода и кремния (С0 2 , Si0 2 ) обладают кислотными свойствами, оксиды остальных элементов подгруппы - амфотерны (Ge0 2 , Sn0 2 , Pb0 2 ).

г) Угольная и кремниевая кислоты (Н 2 СО 3 , H 2 SiO 3 ) - слабые кислоты. Гидроксиды германия, олова и свинца амфотерны, проявляют слабые кислотные и основные свойства: H 2 GeO 3 = Ge(OH) 4 , H 2 SnO 3 = Sn(ОН) 4 , Н 2 РЬО 3 = Pb(OH) 4 .

д) Водородные соединения:

СН 4 ; SiH 4 , GeH 4 . SnH 4 , PbH 4 . Метан - CH 4 - прочное соединение, силан SiH 4 - менее прочное соединение.

Схемы строения атомов углерода и кремния, общие и отличительные свойства.

С lS 2 2S 2 2p 2 ;

Si 1S 2 2S 2 2P 6 3S 2 3p 2 .

Углерод и кремний - это неметаллы, так как на внешнем электронном слое 4 электрона. Но так как кремний имеет больший радиус атома, то для него более характерна способность отдавать электроны, чем для углерода. Углерод - восстановитель:

Задача. Как доказать, что графит и алмаз являются аллотропными видоизменениями одного и того же химического элемента? Чем объяснить различия их свойств?

Решение. И алмаз, и графит при сгорании в кислороде образуют оксид углерода (IV) С0 2 , при пропускании которого через известковую воду выпадает белый осадок карбонат кальция СаС0 3

С + 0 2 = СО 2 ; С0 2 + Са(ОН) 2 = CaCO 3 v - Н 2 О.

Кроме того, из графита можно получить алмаз при нагревании под высоким давлением. Следовательно, в состав и графита, и алмаза входит только углерод. Различие в свойствах графита и алмаза объясняется различием в строении кристаллической решетки.

В кристаллической решетке алмаза каждый атом углерода окружен четырьмя другими. Атомы расположены на одинаковых расстояниях друг от друга и очень прочно связаны между собой ковалентны-ми связями. Этим объясняется большая твердость алмаза.

У графита атомы углерода расположены параллельными слоями. Расстояние между соседними слоями гораздо больше, чем между соседними атомами в слое. Это обусловливает малую прочность связи между слоями, и поэтому графит легко расщепляется на тонкие чешуйки, которые сами по себе очень прочные.

Соединения с водородом, образующие углерод. Эмпирические формулы, вид гибридизации атомов углерода, валентность и степени окисления каждого элемента.

Степень окисления водорода во всех соединениях равна +1.

Валентность водорода равна единице, валентность углерода равна четырем.

Формулы угольной и кремниевой кислот, их химические свойства по отношению к металлам,оксидам,основаниям, специфические свойства.

Н 2 СО 3 - угольная кислота,

Н 2 SiO 3 - кремниевая кислота.

Н 2 СО 3 - существует только в растворе:

Н 2 С0 3 = Н 2 О + С0 2

Н 2 SiO 3 - твердое вещество, практически нерастворимо в воде, поэтому катионы водорода в воде практически не отщепляются. В связи с этим такое общее свойство кислот, как действие на индикаторы, Н 2 SiO 3 не обнаруживает, она еще слабее угольной кислоты.

Н 2 SiO 3 - непрочная кислота и при нагревании постепенно разлагается:

Н 2 SiO 3 = Si0 2 + Н 2 0.

Н 2 CO 3 реагирует с металлами, оксидами металлов, основаниями:

а) Н 2 CO 3 + Mg = MgCO 3 + Н 2

б) Н 2 CO 3 + СаО = СаСO 3 + Н 2 0

в) Н 2 CO 3 + 2NaOH = Na 2 CO 3 + 2Н 2 0

Химические свойства угольной кислоты:

  • 1) общие с другими кислотами,
  • 2) специфические свойства.

Ответ подтвердите уравнениями реакций.

1) реагирует с активными металлами:

Задача. С помощью химических превращений разделите смесь оксида кремния (IV), карбоната кальция и серебра, последовательно растворяя компоненты смеси. Опишите последовательность действий.

Решение.

1) к смеси прилили раствор соляной кислоты.



Вверх