Сила тяжести, формулы. Что такое сила тяжести и каково ее значение для жизни на земле

Сила тяжести - это сила, с которой тело притягивается к Земле вследствие Всемирного тяготения. Сила тяжести заставляет все тела, на которые не действуют другие силы, двигаться вниз с ускорением свободного падения, g. Все тела во Вселенной притягиваются друг к другу, причем, чем больше их массы и чем ближе они расположены, тем притяжение сильнее. Чтобы вычислить силу тяжести, следует массу тела умножить на коэффициент, обозначаемый буквой g, приближенно равный 9,8Н/кг. Таким образом, сила тяжести рассчитывается по формуле

Сила тяжести приблизительно равна силе гравитационного притяжения к Земле (различие между силой тяжести и гравитационной силой обусловлено тем, что система отсчета, связанная с Землей, не вполне инерциальная).

Сила трения.

Сила трения - Сила, возникающая в месте соприкосновения тел и препятствующая их относительному переме-щению. Направление силы трения противоположно направлению движения.

Различают силу трения покоя и силу трения скольжения. Если тело скользит по какой-либо поверхности, его движению препятствует сила трения скольжения.

, где N — сила реакции опоры, a μ — коэффициент трения скольжения. Коэф-фициент μ зависит от материала и качества обработки соприкасающихся поверхностей и не зависит от веса тела. Коэффициент трения определяется опытным путем.

Сила трения скольжения всегда направлена противоположно движению тела. При изменении на-правления скорости изменяется и направление си-лы трения.

Сила трения начинает действовать на тело, когда его пытаются сдвинуть с места. Если внешняя сила F меньше произведения μN, то тело не будет сдвигаться — началу движения, как принято гово-рить, мешает сила трения покоя. Тело начнет дви-жение только тогда, когда внешняя сила F превы-сит максимальное значение, которое может иметь сила трения покоя

Трение покоя - сила трения, препятствующая возникновению движению одного тела по поверхности другого. В некоторых случаях трение полезно (без трения невозможно было бы ходить по земле человеку, жи-вотным, двигаться автомобилям, поездам и т.д.), в таких случаях трение усиливают. Но в других слу-чаях трение вредно. Например, из-за него изнаши-ваются трущиеся детали механизмов, расходуется лишнее горючее на транспорте и т.д. Тогда с трением борются, применяя смазку или заменяя скольжение на качку.

Силы трения не зависят от координат относительного расположения тел, они могут зависеть от скорости относительного движения соприкасающихся тел. Силы трения являются непотенциальными силами.

Вес и невесомость.

Вес - сила воздействия тела на опору (или подвес или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести. При этом возникшие упругие силы начинают действовать на тело с результирующей P, направленной вверх, а сумма сил, приложенных к телу, становится равной нулю.


Сила тяжести прямо пропорциональна массе тела и зависит от ускорения свободного падения, которое максимально у полюсов Земли и постепенно уменьшается при движении к экватору. Сплюснутая у полюсов форма Земли и её вращение вокруг оси приводят к тому, что у экватора ускорение свободного падения приблизительно на 0,5% меньше, чем у полюсов. Поэтому вес тела, измеренный с помощью пружинных весов, будет меньше на экваторе, чем у полюсов. Вес тела на Земле может изменяться в очень широких пределах, а иногда даже исчезать.

Например, в падающем лифте наш вес будет равен 0,а мы будем находится в состоянии невесомости. Однако состояние невесомости может быть не только в кабине падающего лифта, но и на космической станции, вращающейся вокруг Земли. Вращаясь по окружности, спутник движется с центростремительным ускорением, и единственной силой, которая может дать ему это ускорение, является сила тяжести. Поэтому вместе со спутником вращаясь вокруг Земли, мы движемся с ускорением a = g, направленным к её центру. И если мы, находясь на спутнике, встали на пружинные весы, то P = 0. Таким образом, на спутнике вес всех тел равен нулю.

Определение

Под воздействием силы притяжения к Земле все тела падают с одинаковыми по отношению к ее поверхности ускорениями. Такое ускорение называют ускорением свободного падения и обозначают: g. Его величина в системе СИ считается равной g=9,80665 м/с 2 – это так называемое, стандартное значение.

Вышесказанное обозначает то, что в системе отсчета, которая связывается с Землей, на любое тела обладающее массой m действует сила равная:

которая называется силой тяжести.

Если тело находится в состоянии покоя на поверхности Земли, тогда сила тяжести уравновешивается реакцией подвеса или опоры, которая удерживает тело от падения (вес тела).

Различие между силой тяжести и силой притяжения к Земле

Если быть точным, то следует заметить, что в результате неинерциальности системы отсчета, которая связывается с Землей, сила тяжести отличается от силы притяжения к Земле. Ускорение, которое соответствует движению по орбите существенно меньше, чем ускорение, которое связывается с суточным вращением Земли. Система отсчета, связанная с Землей, осуществляет вращение по отношению к инерциальным системам с угловой скоростью =const. Поэтому в случае рассмотрения перемещения тел по отношению к Земле следует учитывать центробежную силу инерции (F in), равную:

где m – масса тела, r – расстояние от оси Земли. Если тело расположено не высоко от поверхности Земли (в сравнении с радиусом Земли), то можно считать, что

где R Z – радиус земли, – широта местности.

В таком случае ускорение свободного падения (g) по отношению к Земле будет определено действием сил: силы притяжения к Земле () и силы инерции (). При этом сила тяжести - есть результирующая этих сил:

Так как сила тяжести сообщает телу, обладающему массой m ускорение равное , то соотношение (1) является справедливым.

Разница между силой тяжести и силой притяжения к Земле небольшая. Так как .

Как и всякая сила, сила тяжести – векторная величина. Направление силы , например, совпадает с направлением нити, натянутой грузом, которое называют направлением отвеса. Сила направлена к центру Земли. Значит, нить отвеса направлена также только на полюсах и экваторе. На других широтах угол отклонения () от направления к центру Земли составляет величину, равную:

Разница между F g -P максимальна на экваторе, она составляет 0,3% от величины силы F g . Так как земной шар является сплюснутым около полюсов, то F g имеет некоторые вариации по широте. Так она у экватора на 0,2% меньше, чем у полюсов. В результате ускорение g изменяется с широтой от 9,780 м/с 2 (экватор) до 9,832 м/с 2 (полюса).

По отношению к инерциальной системе отсчета (например, гелиоцентрической СО) тело в свободном падении будет перемещаться с ускорением (a) отличающимся от g, равным по модулю:

и совпадающим по направлению с направлением силы .

Единицы измерения силы тяжести

Основной единицей измерения силы тяжести в системе СИ является: [P]=H

В СГС: [P]=дин

Примеры решения задач

Пример

Задание. Определите во сколько раз величина силы тяжести на Земле (P 1) больше, чем сила тяжести на Луне (P 2).

Решение. Модуль силы тяжести определяется формулой:

Если имеется в виду сила тяжести на Земле, то в качестве ускорения свободного падения используем величину м/с^2 . Для вычисления силы тяжести на Луне найдем при помощи справочников ускорение свободного падения на этой планете, оно равно 1,6 м/с^2 .

Таким образом, для ответа на поставленный вопрос следует найти отношение:

Проведем вычисления:

Ответ.

Пример

Задание. Получите выражение, которое связывает широту и угол, который образуют вектор силы тяжести и вектор силы притяжения к Земле.

Решение. Угол, который образуется между направлениями силы притяжения к Земле и направлением силы тяжести можно оценить, если рассмотреть рис.1 и применить теорему синусов. На рис.1 изображены: – центробежная сила инерции, которая возникает за счет вращения Земли вокруг оси, – сила тяжести, – сила притяжения тела к Земле. Угол - широта местности на Земле.

В данном параграфе мы напомним Вам о силе тяжести, центростримительном ускорение и весе тела

На каждое тело, находящееся на планете, действует гравитация Земли . Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .


Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

F т =GMm/R 2

где М - масса Земли; R - радиус Земли.
Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле F т =GMm/R 2 модуль ускорения свободного падения g находят по формуле

g=F т /m=GM/R 2 .

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде

F т =mg

В § 5 было отмечено, что поскольку Земля не шар, а эллипсоид вращения, ее полярный радиус меньше экваториального. Из формулы F т =GMm/R 2 видно, что по этой причине сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса и т. п. Тела, ограничивающие движение других тел, называют связями. Под действием силы тяжести связи деформируются и сила реакции деформированной связи по третьему закону Ньютона уравновешивает силу тяжести.

На ускорение свободного падения влияет вращение Земли. Это влияние объясняется так. Системы отсчета, связанные с поверхностью Земли (кроме двух, связанных с полюсами Земли), не являются, строго говоря, инерциальными системами отсчета - Земля вращается вокруг своей оси, а вместе с ней движутся по окружностям с центростремительным ускорением и такие системы отсчета. Эта неинерциальность систем отсчета проявляется, в частности, в том, что значение ускорения свободного падения оказывается различным в разных местах Земли и зависит от географической широты того места, где находится связанная с Землей система отсчета, относительно которой определяется ускорение свободного падения.

Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга. Поэтому при не очень точных расчетах можно пренебречь неинерциальностью систем отсчета, связанных с поверхностью Земли, а также отличием формы Земли от сферической, и считать, что ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с 2 .

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

g=GM/(R+h) 2.

Установлено, что на высоте 300 км над поверхностью Земли ускорение свободного падения меньше, чем у поверхности Земли, на 1 м/с2.
Следовательно, вблизи Земли (до высот нескольких километров) сила тяжести практически не изменяется, а потому свободное падение тел вблизи Земли является движением равноускоренным.

Вес тела. Невесомость и перегрузки

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес - это упругая сила, приложенная к опоре или подвесу (т. е. к связи).

Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести F т только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Р=F т =mg.

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести F т =mg и сила упругости F yп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил F т и F уп дает равнодействующую, вызывающую ускорение тела, т. е.

F т + F уп =mа.

Согласно приведенному выше определению понятия "вес", можно написать, что Р=-F yп. Из формулы: F т + F уп =mа. с учетом того, что F т =mg, следует, что mg-mа=-F yп . Следовательно, Р=m(g-а).

Силы F т и F уп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю

P=m(g-a)

Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то

Р = m = m(g+а).

Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

При свободном падении a=g. Из формулы: P=m(g-a)

следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости . Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.

Абсолютно на все тела во Вселенной действует волшебная сила, каким-то образом притягивающая их к Земле (точнее к ее ядру). Никуда не сбежать, нигде не укрыться от всеобъемлющего магического тяготения: планеты нашей Солнечной системы притягиваются не только к огромному Солнцу, но и друг к другу, все предметы, молекулы и мельчайшие атомы также взаимно притягиваются. известный даже маленьким детям, посвятив жизнь изучению этого явления, установил один из величайших законов — закон всемирного тяготения.

Что такое сила тяжести?

Определение и формула давно и многим известны. Напомним, сила тяжести — это определенная величина, одно из естественных проявлений всемирного тяготения, а именно: сила, с которой всякое тело неизменно притягивается к Земле.

Сила тяжести обозначается латинской буквой F тяж.

Сила тяжести: формула

Как вычислить направленную на определенное тело? Какие другие величины необходимо знать для того? Формула расчета силы тяжести довольно проста, ее изучают в 7-м классе общеобразовательной школы, в начале курса физики. Чтобы ее не просто выучить, но и понять, следует исходить из того, что сила тяжести, неизменно действующая на тело, прямо пропорциональна его количественной величине (массе).

Единица силы тяжести названа по имени великого ученого— Ньютон.

Всегда направлена строго вниз, к центру земного ядра, благодаря ее воздействию все тела равноускоренно падают вниз. Явления тяготения в повседневной жизни мы наблюдаем повсеместно и постоянно:

  • предметы, случайно или специально выпущенные из рук, обязательно падают вниз на Землю (или на любую препятствующую свободному падению поверхность);
  • запущенный в космос спутник не улетает от нашей планеты на неопределенное расстояние перпендикулярно вверх, а остается вращаться на орбите;
  • все реки текут с гор и не могут быть обращены вспять;
  • бывает, человек падает и травмируется;
  • на все поверхности садятся мельчайшие пылинки;
  • воздух сосредоточен у поверхности земли;
  • тяжело носить сумки;
  • из облаков и туч капает дождь, падает снег, град.

Наряду с понятием "сила тяжести" используется термин "вес тела". Если тело расположить на ровной горизонтальной поверхности, то его вес и сила тяжести численно равны, таким образом, эти два понятия часто подменяют, что совсем не правильно.

Ускорение свободного падения

Понятие "ускорение свободного падения" (иначе говоря, связано с термином "сила тяжести". Формула показывает: для того чтобы вычислить силу тяжести, нужно массу умножить на g (ускорение св. п.).

"g" = 9,8 Н/кг, это постоянная величина. Однако более точные измерения показывают, что из-за вращения Земли значение ускорения св. п. неодинаково и зависит от широты: на Северном полюсе оно = 9,832 Н/кг, а на знойном экваторе = 9,78 Н/кг. Получается, в разных местах планеты на тела, обладающие равной массой, направлена разная сила тяжести (формула же mg все равно остается неизменной). Для практических расчетов было принято решение на незначительные погрешности этой величины и пользоваться усредненным значением 9,8 Н/кг.

Пропорциональность такой величины, как сила тяжести (формула доказывает это), позволяет измерять вес предмета динамометром (похож на обычный бытовой бизмен). Обратите внимание, что прибор показывает только силу, так как для определения точной массы тела необходимо знать региональное значение "g".

Действует ли сила тяжести на любом (и близком, и далеком) расстоянии от земного центра? Ньютон выдвинул гипотезу, что она действует на тело даже при значительном удалении от Земли, но ее значение снижается обратно пропорционально квадрату расстояния от предмета до ядра Земли.

Гравитация в Солнечной системе

Есть ли Определение и формула относительно других планет сохраняют свою актуальность. С одной лишь разницей в значении "g":

  • на Луне = 1,62 Н/кг (в шесть раз меньше земного);
  • на Нептуне = 13,5 Н/кг (почти в полтора раза выше, чем на Земле);
  • на Марсе = 3,73 Н/кг (более чем в два с половиной раза меньше, чем на нашей планете);
  • на Сатурне = 10,44 Н/кг;
  • на Меркурии = 3,7 Н/кг;
  • на Венере = 8,8 Н/кг;
  • на Уране = 9,8 Н/кг (практически такое же, как у нас);
  • на Юпитере = 24 Н/кг (почти в два с половиной раза выше).

Сила тяжести - это сила, действующая на тело со стороны Земли и сообщающая телу ускорение свободного падения:

\(~\vec F_T = m \vec g.\)

Любое тело, находящееся на Земле (или вблизи нее), вместе с Землей вращается вокруг ее оси, т. е. тело движется по окружности радиусом r с постоянной по модулю скоростью (рис. 1).

На тело на поверхности Земли действуют сила тяготения \(~\vec F\) и сила со стороны земной поверхности \(~\vec N_p\).

Их равнодействующая

\(~\vec F_1 = \vec F + \vec N_p \qquad (1)\)

сообщает телу центростремительное ускорение

\(~a_c = \frac{\upsilon^2}{r}.\)

Разложим силу тяготения \(~\vec F\) на две составляющие, одна из которых будет \(~\vec F_1\), т. е.

\(~\vec F = \vec F_1 + \vec F_T. \qquad (2)\)

Из уравнений (1) и (2) видим, что

\(~\vec F_T = - \vec N_p.\)

Таким образом, сила тяжести \(~\vec F_T\) - одна из составляющих силы тяготения \(~\vec F\). Вторая составляющая \(~\vec F_1\) сообщает телу центростремительное ускорение.

В точке Μ на географической широте φ сила тяжести направлена не по радиусу Земли, а под некоторым углом α к нему. Сила тяжести направлена по так называемой отвесной прямой (по вертикали вниз).

Сила тяжести равна по модулю и направлению силе тяготения только на полюсах. На экваторе они совпадают по направлению, а по модулю отличие наибольшее.

\(~F_T = F - F_1 = F - m \omega^2 R,\)

где ω - угловая скорость вращения Земли, R - радиус Земли.

\(~\omega = \frac{2 \pi}{T} = \frac{2 \cdot 2,34}{24 \cdot 3600}\) рад/с = 0,727·10 -4 рад/с.

Так как ω очень мала, то F T ≈ F . Следовательно, сила тяжести мало отличается по модулю от силы тяготения, поэтому данным различием часто можно пренебречь.

Тогда F T ≈ F , \(~mg = \frac{GMm}{(h + R)^2} \Rightarrow g = \frac{GM}{(h + R)^2}\) .

Из этой формулы видно, что ускорение свободного падения g не зависит от массы падающего тела, но зависит от высоты.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 39-40.



Вверх