Сформулируйте закон сохранения электрического заряда если система. В чем заключается закон сохранения заряда

Электрический заряд – это способность тел быть источником электромагнитных полей. Так выглядит энциклопедическое определение важной электротехнической величины. Основными законами, связанными с ним, являются Закон Кулона и сохранения заряда. В этой статье мы рассмотрим закон сохранения электрического заряда, постараемся простыми словами дать определение и предоставить все необходимые формулы.

Понятие « » впервые введено в 1875 году в этом. Формулировка утверждает, что сила, которая действует между двумя заряженными частицами направленная по прямой прямо пропорциональна заряду и обратно пропорциональная квадрату расстояния между ними.

Это значит, что, отдалив заряды в 2 раза, сила их взаимодействия уменьшится в четыре раза. А вот так это выглядит в векторном виде:

Граница применимости вышесказанного:

  • точечные заряды;
  • равномерно заряженные тела;
  • его действие справедливо на больших и малых расстояниях.

Заслуги Шарля Кулона в развитии современной электротехники велики, но перейдём к основной теме статьи – закону сохранения заряда. Он утверждает, что сумма всех заряженных частиц в замкнутой системе неизменна. Простыми словами заряды не могут возникнуть или исчезнуть просто так. При этом во времени он не изменяется и его можно измерить (или разделить, квантовать) частями, кратными элементарному электрическому заряду, то есть электрону.

Но помните, что в изолированной системе новые заряженные частицы возникают только под воздействием определенных сил или в результате каких-либо процессов. Так ионы возникают в результате ионизации газов, например.

Если вас заботит вопрос, кем и когда открыт закон сохранения заряда? Он был подтвержден в 1843 году великим учёным — Майклом Фарадеем. В опытах, подтверждающих закон сохранения, количество зарядов измеряется электрометрами, его внешний вид изображен на рисунке ниже:

Но подтвердим свои слова практикой. Возьмем два электрометра, на стержень одного кладем металлический диск, накрываем его сукном. Теперь нам нужен еще один металлический диск на диэлектрической ручке. Его трём о диск, лежащий на электрометре, и они электризуются. Когда диск с диэлектрической ручкой уберут – электрометр покажет насколько заряженным он стал, диском с диэлектрической ручкой касаемся второго электрометра. Его стрелка также отклонится. Если теперь замкнуть два электрометра стержнем на диэлектрические рукоятки – их стрелки вернуться в исходное положение. Это говорит о том, что общий или результирующий электрический заряд равен нулю, и его величина в системе осталась прежней.

Отсюда следует формула, описывающая закон сохранения электрического заряда:

Следующая формула говорит о том, что изменение электрического заряда в объеме равносильно полному току через поверхность. Это также называется «уравнение непрерывности».

А если перейти к очень малому объему получится закон сохранения заряда в дифференциальной форме.

Важно также рассказать, как связаны заряд и массовое число. При разговоре о строении веществ часто звучат такие слова как молекулы, атомы, протоны и подобное. Так вот массовым числом называется общее количество протонов и нейтронов, а число протонов и электронов в ядре называют зарядовым числом. Другими словами, зарядовым числом называют заряд ядра, и он всегда зависит от его состава. Ну а масса элемента зависит от числа его частиц.

Таким образом мы кратко рассмотрели вопросы, связанные с законом сохранения электрического заряда. Он является одним из фундаментальных законов физики наряду с законами сохранения импульса и энергии. Его действие безупречно и с течением времени и развитием техники не удаётся опровергнуть его справедливость. Надеемся, после прочтения нашего объяснения вам стали понятны все ключевые моменты этого закона!

Материалы

Закон сохранения заряда

Не все явления природы можно понять и объяснить на основе использования понятий и законов механики, молекулярно-кинетической теории строения вещества, термодинамики. Эти науки ничего не говорят о природе сил, которые связывают отдельные атомы и молекулы, удерживают атомы и молекулы вещества в твердом состоянии на определенном расстоянии друг от друга. Законы взаимодействия атомов и молекул удается понять и объяснить на основе представлений о том, что в природе существуют электрические заряды.

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, - это электризация тел при соприкосновении. Взаимодействие тел, обнаруживаемое при электризации, называется электромагнитным взаимодействием, а физическая величина, определяющая электромагнитное взаимодействие, - электрическим зарядом. Способность электрических зарядов притягиваться и отталкиваться говорит о наличии двух различных видов зарядов: положительных и отрицательных.

Электрические заряды могут появляться не только в результате электризации при соприкосновении тел, но и при других взаимодействиях, например, под воздействием силы (пьезоэффект). Но всегда в замкнутой системе, в которую не входят заряды, при любых взаимодействиях тел алгебраическая (т.е. с учетом знака) сумма электрических зарядов всех тел остается постоянной. Этот экспериментально установленный факт называется законом сохранения электрического заряда.

Нигде и никогда в природе не возникают и не исчезают электрические заряды одного знака. Появление положительного заряда всегда сопровождается появлением равного по абсолютному значению, но противоположного по знаку отрицательного заряда. Ни положительный, ни отрицательный заряды не могут исчезнуть в отдельности друг от друга, если равны по абсолютному значению.

Появление и исчезновение электрических зарядов на телах в большинстве случаев объясняется переходами элементарных заряженных частиц - электронов - от одних тел к другим. Как известно, в состав любого атома входят положительно заряженные ядро и отрицательно заряженные электроны. В нейтральном атоме суммарный заряд электронов в точности равен заряду атомного ядра. Тело, состоящее из нейтральных атомов и молекул, имеет суммарный электрический заряд, равный нулю.

Если в результате какого-либо взаимодействия часть электронов переходит от одного тела к другому, то одно тело получает отрицательный электрический заряд, а второе - равный по модулю положительный заряд. При соприкосновении двух разноименно заряженных тел обычно электрические заряды не исчезают бесследно, а избыточное число электронов переходит с отрицательно заряженного тела к телу, у которого часть атомов имела не полный комплект электронов на своих оболочках.

Особый случай представляет встреча элементарных заряженных античастиц, например, электрона и позитрона. В этом случае положительный и отрицательный электрические заряды действительно исчезают, аннигилируют, но в полном соответствии с законом сохранения электрического заряда, так как алгебраическая сумма зарядов электрона и позитрона равна нулю.

Приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. В изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. Однако, такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых - заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. То есть был бы отрезок времени, в течение которого заряд не сохраняется. Требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме.

Закон сохранения заряда в интегральной форме

Вспомним, что плотность потока электрического заряда есть просто плотность тока . Тот факт, что изменение заряда в объёме равно полному току через поверхность можно записать в математической форме:

Здесь Ω - некоторая произвольная область в трёхмерном пространстве, - граница этой области, ρ - плотность заряда, - плотность тока (плотность потока электрического заряда) через границу.

Закон сохранения заряда в дифференциальной форме

Переходя к бесконечно малому объёму и используя по мере необходимости теорему Стокса можно переписать закон сохранения заряда в локальной дифференциальной форме (уравнение непрерывности)

Закон сохранения заряда в электронике

Правила Кирхгофа для токов напрямую следуют из закона сохранения заряда. Объединение проводников и радиоэлектронных компонентов представляется в виде незамкнутой системы. Суммарный приток зарядов в данную систему равен суммарному выходу зарядов из системы. В правилах Кирхгофа предполагается что электронная система не может значительно изменять свой суммарный заряд.


Wikimedia Foundation . 2010 .

Смотреть что такое "Закон сохранения электрического заряда" в других словарях:

    ЗАКОН СОХРАНЕНИЯ ЭЛЕКТРИЧЕСКОГО ЗАРЯДА - один из основных законов природы, состоящий в том, что алгебраическая сумма электрических зарядов любой замкнутой (электрически изолированной) системы остаётся неизменной, какие бы процессы ни происходили внутри этой системы … Большая политехническая энциклопедия

    закон сохранения электрического заряда

    Закон сохранения заряда - закон сохранения электрического заряда закон, согласно которому алгебраическая сумма электрических зарядов всех частиц изолированной системы не меняется при происходящих в ней процессах. Электрический заряд любой частицы или системы частиц… … Концепции современного естествознания. Словарь основных терминов

    Законы сохранения фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени. Некоторые из законов… … Википедия

    закон сохранения заряда - krūvio tvermės dėsnis statusas T sritis fizika atitikmenys: angl. charge conservation law; law of conservation of electric charge vok. Erhaltungssatz der elektrischen Ladung, m; Ladungserhaltungssatz, m rus. закон сохранения заряда, m; закон… … Fizikos terminų žodynas

    Закон сохранения электрического заряда гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется. Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа… … Википедия

    Аромат в физике элементарных частиц Ароматы и квантовые числа: Лептонное число: L Барионное число: B Странность: S Очарование: C Прелесть: B Истинность: T Изоспин: I или Iz Слабый изоспин: Tz … Википедия

    Закон сохранения энергии фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и… … Википедия

В обычных условиях микроскопические тела являются электрически нейтральными, потому что положительно и отрицательно заряженные частицы, которые образуют атомы, связаны друг с другом электрическими силами и образуют нейтральные системы. Если электрическая нейтральность тела нарушена, то такое тело называется наэлектризованное тело . Для электризации тела необходимо, чтобы на нём был создан избыток или недостаток электронов или ионов одного знака.

Способы электризации тел , которые представляют собой взаимодействие заряженных тел, могут быть следующими:

  1. Электризация тел при соприкосновении . В этом случае при тесном контакте небольшая часть электронов переходит с одного вещества, у которого связь с электроном относительно слаба, на другое вещество.
  2. Электризация тел при трении . При этом увеличивается площадь соприкосновения тел, что приводит к усилению электризации.
  3. Влияние . В основе влияния лежит явление электростатической индукции , то есть наведение электрического заряда в веществе, помещённом в постоянное электрическое поле.
  4. Электризация тел под действием света . В основе этого лежит фотоэлектрический эффект , или фотоэффект , когда под действием света из проводника могут вылетать электроны в окружающее пространство, в результате чего проводник заряжается.

Многочисленные опыты показывают, что когда имеет место электризация тела , то на телах возникают электрические заряды, равные по модулю и противоположные по знаку.

Отрицательный заряд тела обусловлен избытком электронов на теле по сравнению с протонами, а положительный заряд обусловлен недостатком электронов.

Когда происходит электризация тела, то есть когда отрицательный заряд частично отделяется от связанного с ним положительного заряда, выполняется закон сохранения электрического заряда . Закон сохранения заряда справедлив для замкнутой системы, в которую не входят извне и из которой не выходят наружу заряженные частицы. Закон сохранения электрического заряда формулируется следующим образом:

В замкнутой системе алгебраическая сумма зарядов всех частиц остаётся неизменной:

q 1 + q 2 + q 3 + … + q n = const

где q 1 , q 2 и т.д. – заряды частиц.

Взаимодействие электрически заряженных тел

Взаимодействие тел , имеющих заряды одинакового или разного знака, можно продемонстрировать на следующих опытах. Наэлектризуем эбонитовую палочку трением о мех и прикоснёмся ею к металлической гильзе, подвешенной на шёлковой нити. На гильзе и эбонитовой палочке распределяются заряды одного знака (отрицательные заряды). Приближая заряженную отрицательно эбонитовую палочку к заряженной гильзе, можно увидеть, что гильза будет отталкиваться от палочки (рис. 1.2).

Рис. 1.2. Взаимодействие тел с зарядами одного знака.

Если теперь поднести к заряженной гильзе стеклянную палочку, потёртую о шёлк (положительно заряженную), то гильза будет к ней притягиваться (рис. 1.3).

Рис. 1.3. Взаимодействие тел с зарядами разных знаков.

Отсюда следует, что тела, имеющие заряды одинакового знака (одноимённо заряженные тела), взаимно отталкиваются, а тела, имеющие заряды разного знака (разноименно заряженные тела), взаимно притягиваются. Аналогичные вводы получаются, если приближать два султана, одноименно заряженные (рис. 1.4) и разноименно заряженные (рис. 1.5).

Электростатика изучает свойства и взаимодействия зарядов, которые являются неподвижными в той системе отсчета, в которой они рассматриваются.

В природе есть всего два типа электрических зарядов – отрицательные и положительные. Положительный заряд может возникать на стеклянной палочке, натертой кожей, а отрицательный – на янтаре, натертом шерстяной тканью.

Известно, что все тела состоят из атомов. В свою очередь атом состоит из положительно заряженного ядра и электронов, которые вращаются вокруг него. Так как электроны имеют отрицательный заряд, а ядро положительный – то в целом атом является электрически нейтральным. При воздействии на него из вне, он может потерять один или несколько электронов и превратится в положительно заряженный ион. В случае, если атом (или молекула), присоединит к себе дополнительный электрон, то он превратится в отрицательный ион.

Таким образом, электрический заряд может существовать в виде отрицательных или положительных ионов и электронов. Существует один род «свободного электричества» — отрицательные электроны. Поэтому, если какое-то тело имеет положительный заряд – у него недостаточно электронов, а если отрицательный – то избыток.

Электрические свойства любого вещества обусловлены его атомным строением. Атомы могут терять даже по несколько электронов, в таком случае их называют многократно ионизированными. Из протонов и нейтронов состоит ядро атома. Каждый протон несет заряд, который равен заряду электрона, но противоположен ему по знаку. Нейтроны – это электрически нейтральные частицы (не имеет электрического заряда).

Помимо протонов и электронов, электрическим зарядом обладают и другие элементарные частицы. Электрический заряд – неотъемлемая часть элементарных частиц.

Наименьшим зарядом принято считать заряд, равный заряду электрона. Его еще называют элементарным зарядом, который равен 1,6·10 -19 Кл. Любой заряд кратен целому числу зарядов электрона. Поэтому электризация тела не может происходить непрерывно, а только ступенями (дискретно), на величину заряда электрона.

Если положительно заряженное тело начать перезаряжать (заряжать отрицательным электричеством), то его заряд не изменится мгновенно, а сначала уменьшится до нуля, и только потом приобретет отрицательный потенциал. Отсюда можно сделать вывод, что они компенсируют друг друга. Данный факт привел ученых к выводу, что в «незаряженных» телах всегда имеются заряды положительных и отрицательных знаков, которые содержатся в таких количествах, что их действие полностью компенсирует друг друга.

При электризации трением происходит разделение отрицательных и положительных «элементов», содержащихся в «незаряженном теле». В результате перемещения отрицательных элементов тела (электронов) электризуются оба тела, причем одно из них отрицательно, а второе положительно. Количество «перетекаемых» от одного элемента к другому зарядов остается постоянным в течении всего процесса.

Отсюда можно сделать вывод, что заряды не создаются и не исчезают, а всего лишь «перетекают» от одного тела к другому или перемещаются внутри него. В этом и является сущность закона сохранения электрических зарядов. При трении электризации подвержены многие материалы – эбонит, стекло и многие другие. Во многих отраслях промышленности (текстильная, бумажная и другие) наличие статического электричества представляет серьезную инженерную проблему, так как электризация элементов, вызванная трением бумаги, ткани или других продуктов производства о детали машин могут вызывать пожары и взрывы.

Закон сохранения заряда можно сформулировать короче – в изолированной системе алгебраическая сумма заряженных элементов остается постоянной:

Данный закон справедлив и при взаимных превращениях различных элементарных частиц, составляющих атом и ядро в целом.



Вверх