Применение закона сохранения электрического заряда. Закон сохранения электрического заряда. Закон Кулона

Электродинамика - наука о свойствах электромагнитного поля.

Электромагнитное поле - определяется движением и взаимодействием заряженных частиц.

Проявление эл/магнитного поля - это действие эл/магнитных сил:
1) силы трения и силы упругости в макромире;
2) действие эл/магнитных сил в микромире (строение атома, сцепление атомов в молекулы, превращение элементарных частиц)

Открытие эл/магнитного поля - Дж. Максвелл.

ЭЛЕКТРОСТАТИКА

Раздел электродинамики, изучает покоящиеся электрически заряженные тела.

Элементарные частицы могут иметь эл. заряд, тогда они называются заряженными;
- взаимодействуют друг с другом с силами, которые зависят от расстояния между частицами, но превышают во много раз силы взаимного тяготения (это взаимодействие называется электромагнитным).

Электрический заряд - физическая величина, определяет интенсивность электромагнитных взаимодействий.
Существует 2 знака эл.зарядов: положительный и отрицательный.
Частицы с одноименными зарядами отталкиваются, с разноименными - притягиваются.
Протон имеет положительный заряд, электрон - отрицательный, нейтрон - электрически нейтрален.

Элементарный заряд - минимальный заряд, разделить который невозможно.
Чем объяснить наличие электромагнитных сил в природе? - в состав всех тел входят заряженные частицы.
В обычном состоянии тела электрически нейтральны (т.к. атом нейтрален), и электромагнитные силы не проявляются.

Тело заряжено , если имеет избыток зарядов какого-либо знака:
отрицательно заряжено - если избыток электронов;
положительно заряжено - если недостаток электронов.

Электризация тел - это один из способов получения заряженных тел, например, соприкосновением).
При этом оба тела заряжаются, причем заряды противоположны по знаку, но равны по модулю.

В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной.
(... но, не числа заряженных частиц, т.к. существуют превращения элементарных частиц).

Замкнутая система - система частиц, в которую не входят извне и не выходят наружу заряженные частицы.

Основной закон электростатики.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.

Когда тела считаются точечными ? - если расстояние между ними во много раз больше размеров тел.
Если у двух тел есть электрические заряды, то они взаимодействуют по закону Кулона.

Единица электрического заряда: 1 Кл - это заряд, проходящий за 1 секунду через поперечное сечение проводника при силе тока 1 А
1 Кл - очень большой заряд
Элементарный заряд:

Принято записывать коэффициент пропорциональности в законе Кулона в вакууме в виде

где электрическая постоянная

Закон Кулона для величины силы взаимодействия зарядов в произвольной среде (в СИ):

Диэлектрическая проницаемость среды характеризует электрические свойства среды. В вакууме

Таким образом, сила Кулона зависит от свойств среды между заряженными телами.




Электростатика и законы постоянного тока - Класс!ная физика

Электростатика изучает свойства и взаимодействия зарядов, которые являются неподвижными в той системе отсчета, в которой они рассматриваются.

В природе есть всего два типа электрических зарядов – отрицательные и положительные. Положительный заряд может возникать на стеклянной палочке, натертой кожей, а отрицательный – на янтаре, натертом шерстяной тканью.

Известно, что все тела состоят из атомов. В свою очередь атом состоит из положительно заряженного ядра и электронов, которые вращаются вокруг него. Так как электроны имеют отрицательный заряд, а ядро положительный – то в целом атом является электрически нейтральным. При воздействии на него из вне, он может потерять один или несколько электронов и превратится в положительно заряженный ион. В случае, если атом (или молекула), присоединит к себе дополнительный электрон, то он превратится в отрицательный ион.

Таким образом, электрический заряд может существовать в виде отрицательных или положительных ионов и электронов. Существует один род «свободного электричества» — отрицательные электроны. Поэтому, если какое-то тело имеет положительный заряд – у него недостаточно электронов, а если отрицательный – то избыток.

Электрические свойства любого вещества обусловлены его атомным строением. Атомы могут терять даже по несколько электронов, в таком случае их называют многократно ионизированными. Из протонов и нейтронов состоит ядро атома. Каждый протон несет заряд, который равен заряду электрона, но противоположен ему по знаку. Нейтроны – это электрически нейтральные частицы (не имеет электрического заряда).

Помимо протонов и электронов, электрическим зарядом обладают и другие элементарные частицы. Электрический заряд – неотъемлемая часть элементарных частиц.

Наименьшим зарядом принято считать заряд, равный заряду электрона. Его еще называют элементарным зарядом, который равен 1,6·10 -19 Кл. Любой заряд кратен целому числу зарядов электрона. Поэтому электризация тела не может происходить непрерывно, а только ступенями (дискретно), на величину заряда электрона.

Если положительно заряженное тело начать перезаряжать (заряжать отрицательным электричеством), то его заряд не изменится мгновенно, а сначала уменьшится до нуля, и только потом приобретет отрицательный потенциал. Отсюда можно сделать вывод, что они компенсируют друг друга. Данный факт привел ученых к выводу, что в «незаряженных» телах всегда имеются заряды положительных и отрицательных знаков, которые содержатся в таких количествах, что их действие полностью компенсирует друг друга.

При электризации трением происходит разделение отрицательных и положительных «элементов», содержащихся в «незаряженном теле». В результате перемещения отрицательных элементов тела (электронов) электризуются оба тела, причем одно из них отрицательно, а второе положительно. Количество «перетекаемых» от одного элемента к другому зарядов остается постоянным в течении всего процесса.

Отсюда можно сделать вывод, что заряды не создаются и не исчезают, а всего лишь «перетекают» от одного тела к другому или перемещаются внутри него. В этом и является сущность закона сохранения электрических зарядов. При трении электризации подвержены многие материалы – эбонит, стекло и многие другие. Во многих отраслях промышленности (текстильная, бумажная и другие) наличие статического электричества представляет серьезную инженерную проблему, так как электризация элементов, вызванная трением бумаги, ткани или других продуктов производства о детали машин могут вызывать пожары и взрывы.

Закон сохранения заряда можно сформулировать короче – в изолированной системе алгебраическая сумма заряженных элементов остается постоянной:

Данный закон справедлив и при взаимных превращениях различных элементарных частиц, составляющих атом и ядро в целом.

Закон сохранения заряда утверждает, что во время взаимодействия некоторой замкнутой системы с окружающим пространством количество заряда которое выходит из системы через ее поверхность равно количеству заряда поступившего внутрь системы. Другими словами алгебраическая сумма всех зарядов системы равна нулю.

Формула 1 — Закон сохранения заряда

Как известно в природе существует два вида зарядов. Это положительные и отрицательные. Также величина заряда дискретна, то есть он может меняться только порциями. Элементарным зарядом считается заряд электрона. Если к атому добавить один электрон, то он становится отрицательно заряженным ионом. А если его отнять то положительным.

Основная идея закона сохранения заряда состоит в том, что заряд не возникает из неоткуда и не исчезает в никуда. При возникновении заряда одного знака тут же появляется заряд противоположного знака той же величины.

Для подтверждения этого закона проведем эксперимент. Для него нам понадобится два электрометра. Это приборы показывающих электрически заряд. Он состоит из стержня, на котором закреплена ось. На оси находится стрелка. Все это помещено в цилиндрический корпус, закрытый с двух сторон стеклом.

На стержне первого электрометра находится металлический диск. На который мы поместим другой такой же диск. Между дисками необходимо проложить, какой ни будь изолятор. Например, сукно. У верхнего диска имеется диэлектрическая ручка. Взявшись за эту ручку, потрем диски друг о друга. Таким образом, электризуя их.

Рисунок 1 — Электрометры с закрепленными на них дисками

После того как мы уберем верхний диск электрометр покажет наличие заряда. У него отклонится стрелка. Далее мы возьмём диск и коснемся им стержня второго электрометра. У него также стрелка отклонится, указывая на наличие заряда. Хотя заряд будет противоположного знака. Далее если мы соединим стержни электрометров, то стрелки вернутся в исходное положение. То есть заряды скомпенсируют друг друга.

Рисунок 2 — компенсация зарядов дисков

Что же произошло в данном эксперименте. Когда мы потерли диски друг о друга, произошло разделение зарядов в металле дисков. Изначально каждый диск был электрически нейтрален. Один из них получил избыток электронов, то есть отрицательный заряд. У другого получилась недостача электронов, то есть он стал, заряжен положительно.

Заряды в данном случае не появились из неоткуда. Они уже были внутри проводящих дисков. Только они были скомпенсированы между собой. Мы просто их разделили. Поместив при этом на разные диски. Когда же мы соединили стержни электрометров, то заряды вновь с компенсировались между собой. О чем свидетельствовали стрелки.

Если рассматривать электрометры и диски как единую систему. То несмотря на все наши манипуляции суммарный заряд этой система все время был постоянен. В начальный момент диски были электрически нейтральны. После разделения появились объёмные положительные и отрицательные заряды. Вот только по величине они были одинаковы. А значит, в системе заряд остался тем же. После соединения стержней система вернулась в исходное состояние.

Зако́н сохране́ния электри́ческого заря́да гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа калибровочной инвариантности. Требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. В изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. Однако такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых — заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. То есть был бы отрезок времени, в течение которого заряд не сохраняется. Требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме.

Закон сохранения заряда и калибровочная инвариантность

Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
↕ Трансляции времени Однородность
времени
…энергии
⊠ C, P, CP и T-симметрии Изотропность
времени
…чётности
↔ Трансляции пространства Однородность
пространства
…импульса
↺ Вращения пространства Изотропность
пространства
…момента
импульса
⇆ Группа Лоренца Относительность
Лоренц-инвариантность
…4-импульса
~ Калибровочное преобразование Калибровочная инвариантность …заряда

Физическая теория утверждает, что каждый закон сохранения основан на соответствующем фундаментальном принципе симметрии. Со свойствами симметрий пространства-времени связаны законы сохранения энергии, импульса и момента импульса. Законы сохранения электрического, барионного и лептонного зарядов связаны не со свойствами пространства-времени, а с симметрией физических законов относительно фазовых преобразований в абстрактном пространстве квантовомеханических операторов и векторов состояний. Заряженные поля в квантовой теории поля описываются комплексной волновой функцией, где x - пространственно-временная координата. Частицам с противоположными зарядами соответствуют функции поля, различающиеся знаком фазы , которую можно считать угловой координатой в некотором фиктивном двумерном «зарядовом пространстве». Закон сохранения заряда является следствием инвариантности лагранжиана относительно глобального калибровочного преобразования типа , где Q - заряд частицы, описываемой полем , а - произвольное вещественное число, являющееся параметром и не зависящее от пространственно-временных координат частицы. Такие преобразования не меняют модуля функции, поэтому они называются унитарными U(1).

Закон сохранения заряда в интегральной форме

Вспомним, что плотность потока электрического заряда есть просто плотность тока. Тот факт, что изменение заряда в объёме равно полному току через поверхность, можно записать в математической форме:

Здесь - некоторая произвольная область в трёхмерном пространстве, - граница этой области, - плотность заряда, - плотность тока (плотность потока электрического заряда) через границу.

Закон сохранения заряда в дифференциальной форме

Переходя к бесконечно малому объёму и используя по мере необходимости теорему Стокса можно переписать закон сохранения заряда в локальной дифференциальной форме (уравнение непрерывности)

Закон сохранения заряда в электронике

Правила Кирхгофа для токов напрямую следуют из закона сохранения заряда. Объединение проводников и радиоэлектронных компонентов представляется в виде незамкнутой системы. Суммарный приток зарядов в данную систему равен суммарному выходу зарядов из системы. В правилах Кирхгофа предполагается, что электронная система не может значительно изменять свой суммарный заряд.

Экспериментальная проверка

Наилучшей экспериментальной проверкой закона сохранения электрического заряда является поиск таких распадов элементарных частиц, которые были бы разрешены в случае нестрогого сохранения заряда. Такие распады никогда не наблюдались.Лучшее экспериментальное ограничение на вероятность нарушения закона сохранения электрического заряда получено из поиска фотона с энергией mec 2/2 ≈ 255 кэВ, возникающего в гипотетическом распаде электрона на нейтрино и фотон:

однако существуют теоретические аргументы в пользу того, что такой однофотонный распад не может происходить даже в случае, если заряд не сохраняется. Другой необычный несохраняющий заряд процесс - спонтанное превращение электрона в позитрон и исчезновение заряда (переход в дополнительные измерения, туннелирование с браны и т. п.). Наилучшие экспериментальные ограничения на исчезновение электрона вместе с электрическим зарядом и на бета-распад нейтрона без эмиссии электрона.

Закон сохранения заряда - это фундаментальный закон природы. Он был установлен на основании обобщения экспериментальных данных. Подтвержден в 1843 г. английским физиком М. Фарадеем.

Формулировка закона сохранения электрического заряда

В любой замкнутой системе алгебраическая сумма зарядов - величина неизменная, не зависимо от того, какие процессы происходят в данной системе.

где N - количество зарядов.

Электрический заряд — это релятивистски инвариантная величина, что означает независимость заряда от системы отсчета, то есть величина заряда не зависит от движения или покоя заряда.

Эмпирическим путем (опыты Р. Милликена) было доказано, что электрический заряд - это дискретная величина. Заряд любого тела является кратным целым от заряда электрона, который носит название элементарного заряда. Заряд электрона равен

Электризация тел

Тела в природе могут приобретать электрический заряд. Процесс приобретения электрического заряда называют электризацией. Электризацию можно реализовывать различными способами: трением, при помощи электростатической индукции и т. д. Однако, любой процесс получения телом заряда является разделением зарядов. При этом одно тело или его часть получает избыточный положительный заряд, а другое тело (его часть) имеет при этом избыточный отрицательный заряд. Сумма заряда обоих знаков, которую содержат тела, не изменяется, заряды только испытывают перераспределение.

При соединении заряженного проводника с незаряженным, заряд перераспределяется между обоими телами. Допустим, что одно тело несет отрицательный заряд, его соединяют с незаряженным телом. Электроны заряженного тела под воздействием сил взаимного отталкивания переходят на незаряженное тело. При этом заряд первого тела уменьшается, заряд второго увеличивается, до тех пор пока не наступит равновесие.

Если соединяют положительные и отрицательные заряды, они компенсируют друг друга. Это значит, что объединяя одинаковые по величине отрицательные и положительные заряды, мы получим незаряженное тело.

При электризации тел, с использованием трения, так же происходит перераспределение зарядов. Основной причиной при этом является переход части электронов при тесном контакте тел от одного тела к другому.

Примеры решения задач

ПРИМЕР 1

Задание Два одинаковых проводящих шарика имеют заряды и . Одним шариком коснулись другого, после этого разнесли на некоторое расстояние. Каким стал заряд каждого шарика после соприкосновения ()?
Решение Основой для решения данного заряда является закон сохранения заряда. Будем считать, что система из двух рассматриваемых шариков замкнута. До соприкосновения заряд системы равен:

Так как система замкнута, то после соприкосновения суммарный заряд этих двух шариков не изменится, останется равным . Шарики по условию задачи одинаковые, следовательно, при соприкосновении заряд между телами разделится поровну на две части, получим:

Ответ

ПРИМЕР 2

Задание Пластины плоского воздушного конденсатора заряжены до разности потенциалов . Конденсатор отключили от источника напряжения и в пространство между пластинами внесли диэлектрик (диэлектрическая проницаемость его ). Какова разность потенциалов между пластинами конденсатора во втором состоянии?

Решение Так как конденсатор зарядили и потом проводили манипуляции с диэлектриком, то заряд на этом конденсаторе будет неизменным по закону сохранения заряда:

При этом плотность распределения заряда на пластинах () найдем как:

Плотность распределения заряда, как и заряд не изменяется в нашем случае. Напряженность поля внутри плоского конденсатора равно в первом случае (воздушный конденсатор):



Вверх