Определение возрастающей функции. Промежутки возрастания и убывания

Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.

ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называютмаксимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называютминимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.

На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

    если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;

    если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

Первым шагом является нахождение обрасти определения функции. В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Пусть на некоторой плоскости задана прямоугольная система координат. Графиком некоторой функции , (X- область определения) называется множество точек этой плоскости с координатами, где .

Для построения графика нужно изобразить на плоскости множество точек, координаты которых (x;y) связаны соотношением .

Чаще всего графиком функции является некоторая кривая.

Самый простой способ построения графика - построение по точкам.

Составляется таблица, в которой в одной ячейке стоит значение аргумента, а в противоположной ей значение функции от этого аргумента. Затем полученные точки отмечаются на плоскости, и через них проводится кривая.

Пример построения по точкам графика функции :

Построим таблицу.

Теперь строим график.

Но таким способом не всегда возможно построить достаточно точный график - для точности нужно брать очень много точек. Поэтому используют различные методы исследования функции.

С полной схемой исследования функции знакомятся в высших учебных заведениях. Одним из пунктов исследования функции является нахождение промежутков возрастания (убывания) функции.

Функция называется возрастающей (убывающей) на некотором промежутке, если , для любых x 2 и x 1 из этого промежутка, таких, что x 2 >x 1 .

Например, функция, график которой изображен на следующем рисунке, на промежутках возрастает, а на промежутке (-5;3) убывает. То есть, на промежутках график идет «в гору». А на промежутке (-5;3) «под гору».

Еще одним из пунктов исследования функции является исследование функции на периодичность.

Функция называется периодичной, если существует такое число T, что .

Число T называют периодом функции. Например, функция периодична, здесь период равен 2П, так

Примеры графиков периодичных функций:

Период первой функции равен 3, а второй – 4.

Функция называется четной, если Пример четной функции y=x 2 .

Функция называется нечетной, если Пример нечетной функции y=x 3 .

График четной функции симметричен относительно оси ОУ (осевая симметрия).

График нечетной функции симметричен относительно начала координат (центральная симметрия).

Примеры графиков четной (слева) и нечетной (справа) функции.

Экстремумы функции

Определение 2

Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\le f(x_0)$.

Определение 3

Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\ge f(x_0)$.

Понятие экстремума функции тесно связано с понятием критической точки функции. Введем её определение.

Определение 4

$x_0$ называется критической точкой функции $f(x)$, если:

1) $x_0$ - внутренняя точка области определения;

2) $f"\left(x_0\right)=0$ или не существует.

Для понятия экстремума можно сформулировать теоремы о достаточных и необходимых условиях его существования.

Теорема 2

Достаточное условие экстремума

Пусть точка $x_0$ является критической для функции $y=f(x)$ и лежит в интервале $(a,b)$. Пусть на каждом интервале $\left(a,x_0\right)\ и\ (x_0,b)$ производная $f"(x)$ существует и сохраняет постоянный знак. Тогда:

1) Если на интервале $(a,x_0)$ производная $f"\left(x\right)>0$, а на интервале $(x_0,b)$ производная $f"\left(x\right)

2) Если на интервале $(a,x_0)$ производная $f"\left(x\right)0$, то точка $x_0$ - точка минимума для данной функции.

3) Если и на интервале $(a,x_0)$, и на интервале $(x_0,b)$ производная $f"\left(x\right) >0$ или производная $f"\left(x\right)

Данная теорема проиллюстрирована на рисунке 1.

Рисунок 1. Достаточное условие существования экстремумов

Примеры экстремумов (Рис. 2).

Рисунок 2. Примеры точек экстремумов

Правило исследования функции на экстремум

2) Найти производную $f"(x)$;

7) Сделать выводы о наличии максимумов и минимумов на каждом промежутке, используя теорему 2.

Возрастание и убывание функции

Введем, для начала, определения возрастающей и убывающей функций.

Определение 5

Функция $y=f(x)$, определенная на промежутке $X$, называется возрастающей, если для любых точек $x_1,x_2\in X$ при $x_1

Определение 6

Функция $y=f(x)$, определенная на промежутке $X$, называется убывающей, если для любых точек $x_1,x_2\in X$ при $x_1f(x_2)$.

Исследование функции на возрастание и убывание

Исследовать функции на возрастание и убывание можно с помощью производной.

Для того чтобы исследовать функцию на промежутки возрастания и убывания, необходимо сделать следующее:

1) Найти область определения функции $f(x)$;

2) Найти производную $f"(x)$;

3) Найти точки, в которых выполняется равенство $f"\left(x\right)=0$;

4) Найти точки, в которых $f"(x)$ не существует;

5) Отметить на координатной прямой все найденные точки и область определения данной функции;

6) Определить знак производной $f"(x)$ на каждом получившемся промежутке;

7) Сделать вывод: на промежутках, где $f"\left(x\right)0$ функция возрастает.

Примеры задач на исследования функций на возрастание, убывание и наличие точек экстремумов

Пример 1

Исследовать функцию на возрастание и убывание, и наличие точек максимумов и минимумов: $f(x)={2x}^3-15x^2+36x+1$

Так как первые 6 пунктов совпадают, проведем для начала их.

1) Область определения - все действительные числа;

2) $f"\left(x\right)=6x^2-30x+36$;

3) $f"\left(x\right)=0$;

\ \ \

4) $f"(x)$ существует во всех точках области определения;

5) Координатная прямая:

Рисунок 3.

6) Определить знак производной $f"(x)$ на каждом промежутке:

\ \, т.е. синус функция - ограниченная. Функция нечетная: sin(−x)=−sin x для всех х ∈ R. График функции симметричен относительно начала координат. Функция периодическая 2π : sin(x+2π· k) = sin x, где k ∈ Z для всех х ∈ R. sin x = 0 при x = π·k , k ∈ Z. sin x > 0 (положительная) для всех x ∈ (2π·k , π+2π·k ), k ∈ Z. sin x < 0 (отрицательная) для всех x ∈ (π+2π·k , 2π+2π·k ), k ∈ Z.

Функция косинус

Область определения функции- множество Rвсех действительных чисел. Множество значений функции - отрезок [-1; 1], т.е. косинус функция - ограниченная. Функция четная: cos(−x)=cos x для всех х ∈ R. Функция периодическая с наименьшим положительным периодом 2π : cos(x+2π· k ) = cos x, где k ∈ Z для всех х ∈ R.
cos x = 0при
cos x > 0 для всех
cos x < 0для всех
Функция возрастает от −1 до 1 на промежутках:
Функция убывает от −1 до 1 на промежутках:
Наибольшее значение функции sin x = 1в точках:
Наименьшее значение функции sin x = −1в точках:

Функция тангенс

Множество значений функции - вся числовая прямая, т.е. тангенс - функция неограниченная .

Функция нечетная: tg(−x)=−tg x
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. tg(x+π· k ) = tg x, k Z для всех х из области определения.

Функция котангенс

Множество значений функции - вся числовая прямая, т.е. котангенс - функция неограниченная .

Функция нечетная: ctg(−x)=−ctg x для всех х из области определения.
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. ctg(x+π· k )=ctg x, k Z для всех х из области определения.

20)Общий вид функции Преобразования
y = f (x - b ) Параллельный перенос графика вдоль оси абсцисс на | b | единиц
  • вправо, если b > 0;
  • влево, если b < 0.
y = f (x + b )
  • влево, если b > 0;
  • вправо, если b < 0.
y = f (x ) + m Параллельный перенос графика вдоль оси ординат на | m | единиц
  • вверх, если m > 0,
  • вниз, если m < 0.
Отражение графика
y = f (- x ) ординат.
y = - f (x ) Симметричное отражение графика относительно оси абсцисс.
Сжатие и растяжение графика
y = f (kx )
  • При k > 1 - сжатие графика к оси ординат в k раз,
  • при 0 < k < 1 - растяжение графика от оси ординат в k раз.
y = kf (x )
  • При k > 1 - растяжение графика от оси абсцисс в k раз,
  • при 0 < k < 1 - cжатие графика к оси абсцисс в k раз.
Преобразования графика с модулем
y = | f (x ) |
  • При f (x ) > 0 - график остаётся без изменений,
  • при f (x ) < 0 - график симметрично отражается относительно оси абсцисс.
y = f (| x |)

21)) Совокупность чисел, каждое из которых снабжено своим номером п (п = 1, 2, 3, ...), называется числовой последовательностью.

Отдельные числа последовательности называются ее членами и обозначаются обычно так: первый член a 1 , второй a 2 , .... п -й член a n и т. д. Вся числовая последовательность обозначается

a 1 , a 2 , a 3 , ... , a n , ... или {a n }.

22)Арифметическая прогрессия. Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с постоянным для этой последовательности числом d ,называется арифметической прогрессией . Число d называется разностью прогрессии . Любой член арифметической прогрессии вычисляется по формуле:

a n = a 1 + d (n – 1) .

Сумма n первых членов арифметической прогрессии вычисляется как:

Геометрическая прогрессия. Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на постоянное для этой последовательности число q , называется геометрической

прогрессией . Число q называется знаменателем прогрессии . Любой член геометрической прогрессии вычисляется по формуле:

b n = b 1 q n - 1 .

Сумма n первых членов геометрической прогрессии вычисляется как:

Бесконечно убывающей геометрической прогрессией называется бесконечная геометрическая прогрессия, знаменатель которой удовлетворяет условию .

При неограниченном возрастании сумма первых членов бесконечно убывающей геометрической прогрессии стремится к числу , которое называетсясуммой бесконечно убывающей геометрической прогрессии .

) Производная функции f(x), f′(x) , сама является функцией. Значит, можно найти eё производную.Назовём f′(x) производной функции f(x)первого порядка.Производная от производной функции f(x) называется производной второго порядка (или второй производной).

Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f (x ) в этой точке.

Уравнение касательной к графику функции: y = f(a) + f "(a)(x – a) y = f(a) + f "(a)(x – a)

Физический смысл производной. Если точка движется вдоль оси х и ее координата изменяется по закону x(t), то мгновенная скорость точки:

24)) Производная суммы (разности) функций

Производная алгебраической суммы функций выражается следующей теоремой.

Производная суммы (разности) двух дифференцируемых функций равна сумме (разности) производных этих функций:

Производная конечной алгебраической суммы дифференцируемых функций равна такой же алгебраической сумме производных слагаемых. Например,



Вверх